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Abstract

The theory of biharmonic maps is old and rich and has gained a growing interest in the

last decade. The theory of harmonic maps into Lie groups, symmetric spaces or homogeneous

spaces has been extensively studied in relation to integrable systems by many mathematicians.

In particular, harmonic and biharmonic homomorphisms between Riemannian Lie groups ( a

Riemannian Lie group is Lie group endowed with left invariant Riemannian metric). In this

thesis we discuss the study of biharmonic and harmonic homomorphisms between Riemannian

Lie groups.

This dissertation concerns particularly harmonic and biharmonic homomorphisms between

Riemannian Lie groups which is one of the topics studied on a Lie groups endowed with invariant

structure. Various background material such as Lie groups, Invariant metrics, connections,

curvatures, homogeneous spaces, harmonic homomorphism, biharmonic homomorphism, and

representation theory are reviewed.

As a result, we classify biharmonic and harmonic homomorphisms f : (G, g1) −→ (G, g2)

where G is a connected and simply connected three-dimensional unimodular Lie group and g1

and g2 are left invariant Riemannian metrics.
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Introduction

Generally the term of “Lie group” belongs to E. Cartan (1930). It is defined as a manifold

G endowed with a group structure, such that the multiplication map and the inversion map are

smooth (i.e.differentiable). The simple examples of Lie groups are the groups of isometries of

Rn, Cn. Hence, we obtain the orthogonal group O(n) and the unitary group U(n). An algebra

g can be associated with each Lie group G in a natural way; this is called the Lie algebra of G.

The most important applications of Lie groups involve actions by Lie groups on other

manifolds. A homogeneous space is a manifold M on which a Lie group acts transitively. As a

consequense M is diffeomorphic to the coset space G/H where H is a subgroup of G. In fact,

if we fix a point m ∈ M , then H is the isotropy subgroup of m. In many mathematical fields

(geometry , harmonic analysis ...) a special interest is given to tensors, operators ... invariant

on M . In the classical case of M = R these are simply the tensors, operators ... has constant

coefficients.

The theory of biharmonic maps is old and rich and has gained a growing interest in the

last decade (see [2, 11] and others). The theory of harmonic maps into Lie groups, symmetric

spaces or homogeneous spaces has been extensively studied in relation to integrable systems by

many mathematicians (see for examples [5, 12, 13]). In particular, harmonic maps of Riemann

surfaces into compact Lie groups equipped with a bi-invariant Riemannian metric are called

principal chiral models and intensively studied as toy models of gauge theory in mathematical

physics [14]. In the papers [9, 6], harmonic inner automorphisms of a compact semi-simple

Lie group endowed with a left invariant Riemannian metric where studied. In [3], there is a

detailed study of biharmonic and harmonic homomorphisms between Riemannian Lie groups.1

1A biharmonic homomorphism between Riemannian Lie groups is a homomorphism of Lie groups ϕ : G −→ H

which is also biharmonic where G and H are endowed with left invariant Riemannian metrics.

3



Chapter 1 contains a brief review of Riemannian manifolds, and a definition of group actions

and describing examples. It contains also an introduction of proper actions, which give a nice

properties to the quotients. The quotient manifold theorem gives conditions under which the

quotient of smooth manifold is again smooth manifold. And then discusses a way to make a Lie

group into a Riemannian manifold. The important metrics here are the bi-invariant metrics,

with respect to such metrics we give formulas for the connection and the different types of

curvatures. This chapter is concluded by giving the classification of left invariant metrics on

simply connected three dimensional unimodular Lie groups.

The second chapter of this thesis gives a study of the harmonicity and bi-harmonicity

of Riemannian Lie groups homomorphisms. The reference of This chapter is the article of

M.boucetta and S. Ouakkas [3] , we start with a reminder of the elementary notions on Lie

groups and left invariant metrics on a Lie group (See [10] for more details). By using this

language we show that the harmonicity problem of a hoomorphism of Riemannian Lie groups

is an algebraic problem; therefore, the study of the structure of the Lie algebras will be under

question. The conditions of harmonicity of a homomorphism are expressed with respect to the

structure of the Lie algebras in play. We consider the same problem by restricting the class of

homomorphism to be studied, we consider successively the cases where the homomorphism is

an automorphism, a Riemannian immersion, and a submersion. Finally, we study the situations

where the harmonicity and the bi-harmonicity are equivalent.

Chapter 3 contains the obtained results in our article [1]. We classify, up to conjugation by

automorphisms of Lie groups, harmonic and biharmonic homomorphisms f : (G, g1) −→ (G, g2)

where G is a non-abelian connected and simply-connected three dimensional unimodular Lie

group, f is an homomorphism of Lie groups and g1 and g2 are two left invariant Riemannian

metrics. There are five non-abelian connected and simply-connected three-dimensional uni-

modular Lie groups; the nilpotent Lie group Nil, the special unitary group SU(2), the universal

covering group P̃SL(2,R) of the special linear group, the solvable Lie group Sol, and the univer-

sal covering group Ẽ0(2) of the connected component of the Euclidean group. Our main results

are as follows:

1. For Nil and Sol we show that a homomorphism is biharmonic if and only if it is harmonic

and we classify completely all the harmonic homomorphisms (see Theorems 3.1.1, 3.3.1

and 3.3.2).

2. For Ẽ0(2) we classify completely all the harmonic homomorphisms (see Theorem 3.2.1).

4



For this group there are biharmonic homomorphisms which are not harmonic and we give

a complete classification of these homomorphisms (see Theorem 3.2.2). To our knowl-

edge, these are the first examples of biharmonic not harmonic homomorphisms between

Riemannian Lie groups.

3. For SU(2) and P̃SL(2,R), we give a complete classification of harmonic homomorphisms

(see Theorems 3.4.1 and 3.5.1). We show that these groups have biharmonic homomor-

phisms which are not harmonic and we give the first examples of these homomorphisms.

For SU(2) we recover the results obtained in [9, 6] and we complete them.

5



Chapter 1
Preliminaries

Before we introduce the Lie groups and give examples about them, we first give a brief review of

Riemannian manifolds. We mention the quotient manifold theorem which gives conditions un-

der which the quotient of smooth manifold is again smooth manifold. Taking into consideration

such metrics we give formulas for the connection and the different types of curvatures. We sum

up by giving the classification of left invariant metrics on simply connected three dimensional

unimodular Lie groups.

1.1 Review of the Riemannian manifolds

Definition 1.1.1. A Riemannian metric on a smooth manifold M is a correspondence which

associates to each point p ∈ TpM a scalar product gp = ⟨, ⟩p (that is a symmetric bilinear,

positive definite form) on the tangent space TpM , for any two smooth vector fields X, Y in a

neighborhood of p, the map p 7−→ ⟨Xp, Yp⟩p is smooth. A smooth manifold with a Riemannian

metric is called a Riemannian manifold, and is denoted (M, g = ⟨, ⟩).

Let (M, ⟨, ⟩) be a Riemannian manifold and (x1, ..., xn) local coordinates system on an open

set U and let ∂xi
= ∂

∂xi
(for i = 1, n) be the coordinate vector fields at p.

Then

gp(Xp, Yp) =
n∑

i=1

gij(p)X
i
pY

j
p

where the local functions gij : U −→ R are given by gij(p) = ⟨ ∂
∂xi
, ∂
∂xj

⟩p

6



1.1. REVIEW OF THE RIEMANNIAN MANIFOLDS

The local expression of g is given by

g = ⟨, ⟩ =
∑
i,j

gijdxidxj

Where dxidxj =
1
2
(dxi ⊗ dxj + dxj ⊗ dxi)

In the language of tensorsl, g is a symmetric, non-degenerate (0, 2) tensor field on M .

Proposition 1.1.1. Any smooth manifold carries a Riemann metric.

Proof. Choose a locally finite open covering U = {Uα}α∈A of M by chart domains and a

subordinate partition of the unity (fα : M −→ [0, 1])α∈A. For any α ∈ A define on Uα a

Riemannian metric ⟨, ⟩α by putting

⟨, ⟩α =
n∑

i=1

(dxi)
2

Now define ⟨, ⟩ on M by putting, for any p ∈M and any u, v ∈ TpM ,

⟨u, v⟩ =
∑
α∈A

fα⟨u, v⟩α

One can see easily that ⟨, ⟩ is a Riemannian metric on M

Definition 1.1.2. Let (M, g), (N, g′) be Riemannian manifolds. An isometry is a diffeomor-

phism f : (M, g) −→ (N, g′) that preserves the metrics, i.e.

gp(u, v) = g′f(p)(Tpf(u), Tpf(v)),∀u, v ∈ TpM

where Tpf = dpf is the tangent function.

Example 1. (1) Let M = Rn, Let {e1, ..., en} the canonical basis of Rn and ∂
∂xi

identified with

ei = (0, ..., 1..., 0) The metric is given by g(ei, ej) = δij. In this case Rn is called the Euclidean

space of dimension n.

(2) Let f : M −→ N be an immersion (that is smooth, with dpf one-to-one for all p ∈ M) let

g′ be a Riemannian metric on N , then f induces a Riemannian metric g on M by defining

gp(u, v) = g′f(p)(Tpf(u), Tpf(v)),∀u, v ∈ TpM

Let X (M) be the set of all smooth vector field on M and F(M) be the set of all smooth

real-valued functions on a manifold M . Let X, Y ∈ X (M) Define [X, Y ] = XY − Y X. This is

7



1.1. REVIEW OF THE RIEMANNIAN MANIFOLDS

a function from F(M) to F(M) sending each f to X(Y f)−Y (Xf). We can shows that [X, Y ]

is a derivation on F(M), which is called the bracket of X and Y . The bracket gives to each

p ∈M the tangent vector [X, Y ]p such that

[X, Y ]p(f) = Xp(Y f)− Yp(Xf)

We have, the bracket operation has the following properties:

1. [X, Y ] = −[Y,X] (skew-symmetry),

2. [aX + bY, Z] = a[X,Z] + b[Y, Z], [Z, aX + bY ] = a[Z,X] + b[Z, Y ] (R-bilinearity),

3. [X, [Y, Z]] + [Y, [Z,X]] + [Z, [X, Y ]] = 0 (Jacobi identity).

Definition 1.1.3. An connection ∇ on a smooth manifold M is a mapping ∇ : X (M) ×
X (M) −→ X (M), (X, Y ) 7−→ ∇XY that satisfies the following conditions:

1. ∇X(Y + Z) = ∇XY +∇XZ,

2. ∇fX+gYZ = f∇XZ + g∇YZ,

3. ∇X(fY ) = f∇XY +X(f)Y (Leibniz rule)

for all X, Y, Z ∈ X (M) and f, g ∈ F(M)

Definition 1.1.4. Let α : I −→M be a curve in a manifold M , a vector field along the curve

α is a smooth map such that: for every t ∈ I gives a tangent vector V (t) ∈ Tα(t)M . To say

that V is smooth means that for any smooth function f on M , the function t −→ V (t)f is a

smooth function on I. Where I is an open interval in R.

Proposition 1.1.2. Let M be a Riemannian manifold with connection ∇, and α a curve of

M . Then there exists a unique operator that associates to a vector field V along the curve α

another vector field V ′(t) = DαV (t) along α, such that:

1. Dα(aV + bW ) = aDαV + bDαW,a, b ∈ R

2. Dα(fV ) = df
dt
V + fDαV, f ∈ F(I)

3. d
dt
⟨V (t),W (t)⟩ = ⟨DαV (t),W (t)⟩+ ⟨V (t), DαW (t)⟩

4. If V (t) = Y (α(t)) where Y ∈ X (M), then DαV (t) = ∇α′(t)Y

8



1.1. REVIEW OF THE RIEMANNIAN MANIFOLDS

In the special case that DαV (t) = 0, the vector field V along α is called parallel.

The following definition is motivated from the notion of a parallel vector field along a curve:

Definition 1.1.5. A geodesic in a Riemannian manifold M is a curve γ : I −→ M whose

vector field γ′ is parallel, that is,

∇γ′γ′ = 0

Remark 1. A linear connection ∇ on a Riemannian manifold (M, ⟨, ⟩) is called compatible

with the Riemannian metric if, for any smooth curve α : I −→ M and for any t0, t1 ∈ I, the

parallel transport τt0,t1 : Tα(t0)M −→ Tα(t1)M preserves the scalar product.

Proposition 1.1.3. Let (M, ⟨, ⟩) be a Riemannian manifold and ∇ a linear connection. The

following points are equivalent:

1. ∇ is compatible with the metric.

2. For any α : I −→M and any vector fields V,W along α

d

dt
⟨V (t),W (t)⟩ = ⟨DαV (t),W (t)⟩+ ⟨V (t), DαW (t)⟩

3. For any X, Y, Z ∈ X (M),

∇X⟨Y, Z⟩ = X⟨Y, Z⟩ − ⟨∇XY, Z⟩ − ⟨∇XZ, Y ⟩ = 0

Levi-Civita connection The following theorem is a fundamental result in Riemannian

geometry

Theorem 1.1.1. Given a Riemannian manifold (M, ⟨, ⟩, there exists a unique linear connection

∇ (called the Levi-Civita or Riemannian connection) such that:

(i) ∇XY −∇YX − [X, Y ] = 0,∀X, Y ∈ X (M).

(ii) ∇ is compatible with the metric, this is equivalent to

X⟨Y, Z⟩ = ⟨∇XY, Z⟩+ ⟨∇XZ, Y ⟩,∀X, Y, Z ∈ X (M)

This connection is characterized by the Koszul formula.

2⟨∇XY, Z⟩ = X.⟨Y, Z⟩+ Y.⟨X,Z⟩ − Z.⟨X, Y ⟩
+⟨[X, Y ], Z⟩+ ⟨[Z,X], Y ⟩+ ⟨[Z, Y ], X⟩.

9



1.1. REVIEW OF THE RIEMANNIAN MANIFOLDS

Proof. To compute ∇XY it is sufficient to compute ⟨∇XY, Z⟩, because ⟨, ⟩ is nondegenerate.

By using over and over the fact that ∇ is compatible with the metric and torsion free, we get

⟨∇XY, Z⟩ = X.⟨Y, Z⟩ − ⟨Y,∇XZ⟩
= X.⟨Y, Z⟩ − ⟨Y,∇ZX⟩ − ⟨Y, [X,Z]⟩
= X.⟨Y, Z⟩ − Z.⟨Y,X⟩+ ⟨∇ZY,X⟩ − ⟨Y, [X,Z]⟩
= X.⟨Y, Z⟩ − Z.⟨Y,X⟩+ ⟨∇YZ,X⟩+ ⟨[Z, Y ], X⟩ − ⟨Y, [X,Z]⟩
= X.⟨Y, Z⟩ − Z.⟨Y,X⟩+ Y.⟨Z,X⟩ − ⟨Z,∇YX⟩+ ⟨[Z, Y ], X⟩ − ⟨Y, [X,Z]⟩
= X.⟨Y, Z⟩ − Z.⟨Y,X⟩+ Y.⟨Z,X⟩ − ⟨Z,∇XY ⟩+ ⟨Z, [X, Y ]⟩+ ⟨[Z,X], Y ⟩+ ⟨[Z, Y ], X⟩.

Thus

2⟨∇XY, Z⟩ = X.⟨Y, Z⟩+ Y.⟨X,Z⟩ − Z.⟨X, Y ⟩
+⟨[X, Y ], Z⟩+ ⟨[Z,X], Y ⟩+ ⟨[Z, Y ], X⟩.

(1.1)

This formula gives the uniqueness and can be used to define ∇.

We will give the notion of curvature, the Riemann curvature tensor is one of the basic in-

variants of a Riemannian manifold. In fact, Riemann introduced the notion of the sectional

curvature in geometric manner as an extension of the Gaussian curvature for surfaces to arbi-

trary Riemannian manifolds. His definition was not a practical. It took several years to reach

a formulation that is easy to use to prove theorems.

Definition 1.1.6. Let M be a Riemannian manifold, with Levi-Civita connection ∇. The

Riemann curvature tensor is the function

R : X (M)×X (M)×X (M) −→ X (M)

given by

R(X, Y )Z = ∇[X,Y ]Z −∇X∇YZ +∇Y∇XZ. (1.2)

Theorem 1.1.2. Let M be a Riemannian manifold and R a Riemann curvature tensor, then

R satisfying the following:

1. R is a tensor field of type (3, 1).

2. R is the unique tensor field satisfying for any variation (s, t) −→ Γ(s, t) ∈ M and any

vector field along Γ

DSDTY −DTDSY = −R(S, T )Y. (1.3)

10



1.1. REVIEW OF THE RIEMANNIAN MANIFOLDS

Proof. 1. We will show that R given by 1.2 is a tensor field, i.e., it is C∞(M) 3-linear. Let

f ∈ C∞(M). we have

−R(fX, Y )Z = ∇fX∇YZ −∇Y∇fXZ −∇[fX,Y ]Z

= f∇X∇YZ −∇Y f∇XZ −∇f [X,Y ]−Y (f)XZ

= f∇X∇YZ − f∇Y∇XZ − Y (f)∇XZ − f∇[X,Y ]Z + Y (f)∇XZ

= −fR(X, Y )Z.

Since R(X, Y )Z = −R(Y,X)Z, then we have R(X, fY )Z = fR(X, Y )Z. On the other

hand, we have

−R(X, Y )fZ = ∇X∇Y fZ −∇Y∇XfZ −∇[X,Y ]fZ

= ∇X(f∇YZ + Y (f)Z)−∇Y (f∇XZ +X(f)Z)− f∇[X,Y ]Z − [X, Y ](f)Z

= f∇X∇YZ +X(f)∇YZ + Y (f)∇XZ +X(Y (f))Z − f∇Y∇XZ − Y (f)∇XZ

−X(f)∇YZ − Y (X(f))Z − f∇[X,Y ]Z − [X, Y ](f)Z

= −fR(X, Y )Z,

2. Put Γ(s, t) = (x1(s, t), ..., xn(s, t)), where (x1, ..., xn) a coordinates system and let Y =∑n
i=1 Yi(s, t)∂i. We have

T (s, t) =
n∑

i=1

∂xi
∂t
∂i and S(s, t) =

n∑
i=1

∂xi
∂s

∂i

DTY =
n∑

i=1

∂Yi
∂t

∂i +
n∑

i,j=1

Yi
∂xj
∂t

∇∂j∂i

DSDTY =
n∑

i=1

∂2Yi
∂s∂t

∂i+
n∑

i,j=1

(
∂Yi
∂s

∂xj
∂t

+
∂Yi
∂t

∂xj
∂s

+
∂2xj
∂t∂s

)
∇∂i∂j+

n∑
i,j,k=1

Yi
∂xj
∂t

∂xk
∂s

∇∂k∇∂j∂i

In the same way we get DTDSY . Then we get

(DSDT −DTDS)Y =
∑n

i,j,k=1 Yi
∂xj

∂t
∂xk

∂s
(∇∂k∇∂j∂i −∇∂j∇∂k∂i)

= −
∑n

i,j,k=1 Yi
∂xj

∂t
∂xk

∂s
R(∂j, ∂k)∂i

= −R(S, T )Y

3. Now we show the uniqueness of R, Let R′ be a (3, 1)-tensor field satisfying 1.3. Let

p ∈ M and ψ = (x1, . . . , xn) a coordinates system around p satisfying ψ(p) = 0. For

i, j ∈ {1, ..., n} fixed, we consider the variation Γ given by

Γ(s, t) = ψ−1(0, . . . , s, . . . , t, . . . , 0)

11



1.1. REVIEW OF THE RIEMANNIAN MANIFOLDS

, s at the i-place and t at the j-place. We have S = ∂i and T = ∂j and let Y = ∂k. Since

R′ satisfies 1.3, we get

R′(∂i, ∂j)∂k = −(DSDT −DTDS)Y = R(∂i, ∂j)∂k

thus R′ = R.

A simpler real-valued function that completely determines R is the sectional curvature.

Definition 1.1.7. Let (M, ⟨, ⟩) be a Riemannian manifold. For any p ∈ M Let V be a two-

dimensional subspace of TpM and let u, v ∈ V be two linearly independent vectors. Then the

number

Q(u, v) =
⟨R(u, v)u, v⟩

⟨u, u⟩⟨v, v⟩ − ⟨u, v⟩2

does not depend on the choice of the vectors u, v. It is called the sectional curvature of V at p.

Theorem 1.1.3. The curvature tensor at a point p is uniquely determined by the sectional

curvatures of all the two-dimensional subspaces V of the tangent space TpM .

A Riemannian manifold is said to have constant sectional curvature (positive or negative)

if Q(V ) is a constant (positive or negative) for all planes V in TpM and for all points p ∈M . If

the sectional curvature is zero at every point, then the Riemannian manifold is said to be flat.

Definition 1.1.8. Let (M, ⟨, ⟩) be a Riemannian metric and R its curvature tensor. The Ricci

curvature Ric(X, Y ) of M is the trace of the map Z −→ R(X,Z)Y

Let (e1, ..., en) be an orthonormal basis of TpM , we have for any u, v ∈ TpM ,

ric(u, v) = tr(x 7−→ R(u, x)v)

=
∑n

i=1⟨R(u, ei)v, ei⟩
=
∑n

i=1⟨R(v, ei)u, ei⟩
= ric(v, u)

We can see the Ricci curvature as an endomorphism Ricp : TpM −→ TpM such that

ric(u, v) = ⟨Ricp(u), v⟩ = ⟨Ric(v), u⟩,∀u, v ∈ TpM

Thus

Ricp(u) =
n∑

i=1

R(u, ei)ei.

12



1.2. LIE GROUPS

We call Ric Ricci operator. It is a symmetric field of endomorphism and hence has real eigen-

values in each point p ∈ M say λ1p ≤ ... ≤ λnp . The metric has positive (resp. strictly positive)

Ricci curvature if, for any i = 1, ..., n, λip ≥ 0 (resp. λip > 0). In analogue way, we can define

metric of negative Ricci curvature and strictly negative curvature. The metric is called Einstein

if ric = λ⟨, ⟩ where λ is a constant.

Definition 1.1.9. The scalar curvature of (M, ⟨, ⟩) is the C∞ function s :M −→ R given by

s(p) = tr(Ricp) =
n∑

i=1

λip =
n∑

i=1

ric(ei, ei)

1.2 Lie groups

Definition 1.2.1. A Lie group is a group G, equipped with a manifold structure such that the

group operations

(i) The map p : G×G→ G defined by p(g, h) = gh is smooth when G×G is endowed with the

product manifold structure.

(ii) The map inv : G→ G defined by inv(g) = g−1 is smooth.

A morphism of Lie groups G, G′ is a morphism of groups φ : G −→ G′ that is smooth.

Example 2. Any discrete group G is a Lie group of dimension zero. In particular Z or more

generally Zn, is a Lie group. It is a closed subgroup of Rn.

Example 3. The multiplicative group R∗ is a Lie group. It is not connected. R∗
+ of positive real

numbers is also a Lie group. Similarly, C∗ is a (2 dimensional) Lie group which is connected.

It is a complex Lie group.

Example 4. The unit circle S1 is a Lie group. There are two ways to see this. One is by

considering S1 in C∗ with multiplication induced from C∗ The other is by using the identification

S1 = R/Z. The set Z of integers is a normal subgroup of R, and so R/Z is a group, and since

it is discrete, R/Z is also a manifold. The smooth addition of R induces a smooth addition in

R/Z.

Example 5. The product G × H of two Lie groups is itself a Lie group with the product

manifold structure, and multiplication (g1, h1)(g2, h2) = (g1g2, h1h2), as example for this The

n-torus T n = S1 × ...× S1 (n times) is a Lie group of dimension n.

13



1.2. LIE GROUPS

Example 6. GLn(R), is a (dense) open subset of Mn(R) and thus has a manifold structure

in which multiplication is a polynomial function of the coordinates. Moreover, inversion is a

rational function of the coordinates with a non vanishing denominator. Hence GLn(R) is a real

Lie group of dimension n2.

The following examples of Lie groups are obtained as closed subgroups of the general linear

group, so we need the following definitions.

Definition 1.2.2. A Lie subgroup of a Lie group G is a Lie group H that is an abstract subgroup

and an immersed submanifold of G.

We have the following theorem :

Theorem 1.2.1 (E. Cartan’s theorem.). Let H be a closed subgroup of a Lie group G. Then

H is an embedded submanifold, and hence is a Lie subgroup.

We can now give more examples of Lie groups that are defined by using functions onMn(R)

as the determinant, transpose and complex conjugate, hence are Lie groups by the previous

theorem.

Example 7. (1) The special linear group is SL(n,R) = {A ∈ GLn(R) : det(A) = 1}.
(2) The orthogonal group is the group O(n) = {A ∈ GLn(R) : AtA = In}. The condition

AtA = In is equivalent to A−1 = At and so O(n) = F−1(In), where F : GLn(R) −→ GLn(R)

with F (A) = AtA.

(3) The special. orthogonal group is the group SO(n) = {A ∈ O(n) : det(A) = 1}.

Let x be an element of a Lie group G. We define the maps

Lx : G −→ G,Lx(g) = xg (left translation).

Rx : G −→ G,Rx(g) = gx (right translation)

These maps are smooth, in fact they are diffeomorphisms since, the inverse of Lx is Lx−1 . We

have (dLx−1)x : TxG −→ TeG is isomorphism of vector spaces, then we have the following:

Proposition 1.2.1. Any Lie group G is parallelizable, i.e. TG ∼= G× TeG

Definition 1.2.3. A vector field X on G is left invariant if for all g ∈ G, we have:

Xgx = TxLg(Xx)

14



1.3. ACTION OF LIE GROUPS ON MANIFOLDS AND REPRESENTATIONS

The set of left-invariant vector fields on G is denoted X l(G), it is a Lie subalgebra of X (G)

for the bracket of vector fields, since it is closed under the bracket on Vector fields.

In fact, X l(G) is a real vector space of finite dimension equal to the dimension of G and this

result comes from that the map ϕ : X l(G) −→ TeG given by X 7−→ Xe is an isomorphism of

vector spaces. The isomorphism ϕ allows to transport the Lie algebra structure of X l(G) on

TeG as follows: if we denote for all u ∈ TeG, v
l := ϕ−1(v) ∈ X l(G) we get a structure of Lie

algebra on TeG given by the bracket:

[u, v] := [ul, vl]e.

Then we call Lie algebra of G and we denote by g = TeG.

Proposition 1.2.2. If ϕ : G −→ H is a homomorphism of Lie groups, then the map deϕ :

g −→ h is a homomorphism of Lie algebras,

These are Lie’s results:

Theorem 1.2.2 (An). (i) For any Lie algebra g there is a Lie group G (not necessarily unique)

whose Lie algebra is g.

(ii) Let G be a Lie group with Lie algebra g. If H is a Lie subgroup of G with Lie algebra

h, then h is a Lie subalgebra of g. Conversely, for each Lie subalgebra h of g, there exists a

unique connected Lie subgroup H of G which has h as its Lie algebra.

(iii) Let G1, G2 be Lie groups with corresponding Lie algebras g1, g2. Then if g1 and g2 are

isomorphic as Lie algebras, then G1 and G2 are locally isomorphic. If the Lie groups G1, G2

are simply connected (i.e. their fundamental groups are trivial), then G1 is isomorphic to G2.

1.3 Action of Lie groups on manifolds and representa-

tions

Definition 1.3.1. Let G be a group and M a set. Then G is said to act on M (on the left) if

there is a map θ : G×M →M such that:

(i) If e is the identity element of G then

θ(e, x) = x for all x ∈M

(ii) If g1,g2 ∈ G, then

θ(g1, θ(g2, x)) = θ(g1g2, x) for all x ∈M

15
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θ(g, x) denoted by g.x

A right action is defined analogously as map θ :M ×G −→ G with θ(x, g) = x.g.

Now suppose G is a Lie group and M is a manifold. An action of G on M is said to be

continuous if the map θ is continuous, and it is smooth if the map θ is smooth.

The conditions (i) and (ii) for a left action give

θ(g1, .) ◦ θ(g2, .) = θ(g1g2, .)

θ(e, .) = IdM

Thus, for a continuous action each θ(g, .) : M −→ M is a homeomorphism because it has an

inverse θ(g−1, .) continuous. If the action is smooth, then each θ(g, .) is a diffeomorphism.

• For any x ∈M , the orbit of x under the action is the sets

Gx = {g.x : g ∈ G},

the set of all images of x under the action by elements of G.

• The action is transitive if for any two points x,y ∈ M , there is a group element g such

that g.x = y, or equivalently if the orbit of any point is all of M .

• Given x ∈ M , the isotropy group of x, denoted by Gx, is the set of elements g ∈ G

that fix x:

Gx = {g ∈ G : g.x = x}.

• The action is said to be free if the only element of G that fixes any element of M is the

identity: g.x = x for some x ∈ X implies g = e. This is equivalent to the requirement that

Gx = {e} for every x ∈M .

Example 8. The natural action of GL(n,R) on Rn is the left action given by matrix mul-

tiplication: (A, x) 7→ Ax, considering x ∈ Rn as a column matrix. This an action because

Inx = x and matrix multiplication is associative:(AB)x = A(Bx). Because any nonzero vector

can be taken to any other by some linear transformation, there are exactly two orbits: {0} and

Rn⧹{0}.

Example 9. The restriction of the natural action to O(n) × Rn → Rn defines a left action

of O(n) on Rn. Any nonzero vector of length R can be taken to any other by an orthogonal
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matrix. (If v and v′ are such vectors, complete v⧸|v| and v′⧸|v′| to orthonormal bases and let

A and A′ be the orthogonal matrices whose columns are these orthonormal bases; then A′A−1

takes v to v′). In this case, the orbits are the origin and the spheres centered at the origin.

Example 10. The restriction of the natural action to O(n) × Sn−1 → Sn−1, we obtain a

transitive action of O(n) on Sn−1.

Example 11. The natural action of O(n) restricts to an action of SO(n) on Sn−1. For SO(1),

this is trivial because SO(1) = {1}. But For n > 1, SO(n) acts transitively on Sn−1. Since

O(n) acts transitively, there is a matrix A ∈ O(n) taking e1 to v. Either detA = 1, in which

case A ∈ SO(n), or detA = −1, in which case the matrix obtained by multiplying the last

column of A by −1 is in SO(n) and still takes e1 to v.

1.3.1 Representations theory

There are different reasons to look for the representations. For example, a representation is a

useful tool for understanding the group and its possible invariants. Since the Lie groups are

often the symmetry groups of spaces of functions, finding the ways in which a group can act

helps to understand these spaces.

Definition 1.3.2. Let G be a Lie group. A (finite-dimensional) representation of G is a

Lie homomorphism ρ : G −→ Aut(V ), where V is a (finite-dimensional) vector space. The

dimension of the representation is the dimension of the vector space V . Where Aut(V ) =

GL(V )

Any representation ρ defines a smooth action of G on V :

g.v = ρ(g)v, for g ∈ G, v ∈ V

Definition 1.3.3. An action of G on a finite-dimensional vector space V is said to be linear

if for each g ∈ G the map v 7−→ g.v is linear.

Remark 2. We have for any representation ρ : G −→ GL(V ) the action g.v = ρ(g)v, for g ∈
G, v ∈ V is linear. And the image of ρ is a Lie subgroup og GL(V ), if ρ is injective then the

representation is called faithful representation

Proposition 1.3.1. Let G be a Lie group and let V be a finite-dimensional vector space, then

a smooth action of G on V is linear if and only if it has a form for some representation ρ of

G.
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Example 12. Let G = Rn and V = Rn+1, put ρ : Rn −→ GL(n + 1,R) the map sends x ∈ Rn

to the matrix ρ(x) =

(
In x

0 1

)
, we have ρ is a faithful representation of the Lie group Rn.

Example 13. If G is any Lie subgroup of GL(n,R), the inclusion map G ↪→ GL(n,R) is a

faithful representation.

Example 14. Let G = Rn and V = Cn, put ρ : Rn −→ GL(n,C) for x ∈ Rn, ρ(x) is the

diagonal matrix with diagonal entries (e2πix1 , ..., e2πixn). This action is not faithful, since its

kernel is Zn.

Example 15. The adjoint representation

Let G be a Lie group and x ∈ G. Then the map Cx : G −→ G sending each g to :xgx−1

is a homomorphism and, because Cx = Rx−1 ◦ Lx is a diffeomorphism, it is called an inner

automorphism of G. We let Ad(g) = (deCg) : g −→ g. This is a homomorphism since

Cxy = Cx ◦Cy implies that Ad(xy) = Adx ◦Ady (We take differentials). And Ad(x) is invertible

with inverse Ad(x−1). It is also smooth (see [Lee]). Then Ad : G −→ GL(g) is a representation,

called the adjoint representation.

Remark 3. If ρ is any representation of G, then deρ : g −→ GL(g) is a representation of

g, when g is the Lie algebra of G. As an example ad(u) = deAd(u) is called the adjoint

representation of g.

Proposition 1.3.2. The correspondence ad : g −→ End(g), u 7−→ adu is called the adjoint

representation of Lie algebra g. Moreover, if u, v ∈ g, then:

adu(v) = [u, v]

Remark 4. g is unimodular if and only if tr(adu) = 0,∀u ∈ g.

Definition 1.3.4. A continuous action is said to be proper if the map:

G×M −→ M ×M

(g, x) 7−→ (g.x, x)

is a proper map.Where proper map is defined as a map between topological spaces such that, its

preimage of a compact subset is compact itself.
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Proposition 1.3.3. Let M be a manifold, and let G be a Lie group acting continuously on M .

Then, the action is proper if and only if following holds: If (pi) is a convergent sequence in M

and (gi) is sequence in G such that (gi.pi) converge in M , then a subsequence of (gi) converge

in G.

Corollary 1.3.1. Any continuous action by a compact Lie group on a manifold is proper.

1.4 Orbits and homogeneous spaces

Let a Lie group G acts on a manifold M . We can define an equivalence relation on M by

setting p ∼ q if there exists g ∈ G such that g.p = q. The set of orbits is denoted byM/G; with

the quotient topology it is called the orbit space of the action. It is important to determine

conditions such that an orbit space is a smooth manifold.

Theorem 1.4.1 (Quotient Manifold Theorem see [15]). Suppose G is a Lie group acting

smoothly,freely and properly on a smooth manifold M .Then the orbit space M/G is a topo-

logical manifold of dimension equal to dim(M) − dim(G), and has a unique smooth structure

with the property that the quotient map π :M −→M/G is a smooth submersion.

Let G be a Lie group and H a closed subgroup of G, it is possible to make a smooth manifold

on the set G/H = {gH : g ∈ G}. Furthermore, We will see that the group G acts in a natural

way on G/H , and this action such that any two points in G/H can be joined by the action

of G, i.e., the action is transitive. This manifold with this transitive action will be called a

homogeneous space, and it includes a large variety of manifolds with special importance in

mathematics and physics.

Consider the coset space G/H. Let π : G −→ G/H denote the projection that sends each

g ∈ G to the coset gH.

Theorem 1.4.2 (see [15]). Let G be a Lie group, and H a closed subgroup of G. Then there is

a unique way to make G/H a manifold so that the projection π : G −→ G/H is a submersion.

Theorem 1.4.3 (see [15]). Let G ×M −→ M be a transitive action of a Lie group G on a

manifold M , and let H = Gx be the isotropy subgroup of a point x ∈M . Then:

1. The subgroup H is a closed subgroup of G.

2. The map γ : G/H −→ M given by γ(gH) = g.x is a diffeomorphism.( the orbit G.x is

diffeomorphic to G/H).
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3. The dimension of G/H is dimG− dimH.

Definition 1.4.1. A homogeneous space is a manifold M with a transitive action of a Lie

group G. Equivalently, it is a manifold of the form G/H , where G is a Lie group and H a

closed subgroup of G.

Example 16. Any Lie group is a homogeneous space, since there are two representations:

G = G × G/G = G/{e}. For the first representation of G as a homogeneous space, G × G

acts on G by left and right translations, and the isotropy subgroup is G diagonally embedded in

G×G.

Definition 1.4.2. Let M be a Riemannian manifold, we call M A Riemannian homogeneous

space on which its isometry group I(M) acts transitively.

Remark 5. The isometry group of a Riemannian manifold is a Lie group (this is theorem of

Myers-Steenrod).

Example 17. The group O(n+1) acts on the unit sphere Sn in Rn+1 when n ≥ 1. This action is

transitive as in example 10. In Example 11, SO(n+1) acts transitively on Sn. Then for n ≥ 1,

Sn is a homogeneous space. Thus Sn is diffeomorphic to the quotient manifold O(n + 1)/O(n)

and also it is diffeomorphic to SO(n+ 1)/SO(n)

Example 18. The Euclidean group E(n) = {

(
A b

0 1

)
: A ∈ O(n), b ∈ Rn} acts transitively

on Rn by the action

(
A b

0 1

)
• x = Ax+ b. Thus Rn is a homogeneous E(n)- space.

Example 19. SL(2,R) acts transitively by Möbius transformations (

(
a b

c d

)
.z = az+b

cz+d
) on

the upper half plane H = {z ∈ C : Imz > 0}, then H is homogeneous space and we have the

isotropy group of i ∈ H is exactly SO(2). Thus H ≈ SL(2,R)/SO(2).

Example 20 (Grassmanna Manifolds). The set of all k-dimensional (vector) subspaces V ⊂ Rn

is called the Grassmann manifold of k-planes in Rn and denoted by Gk,n(R). The group O(n)

acts naturally on Gk,n(R) by matrix multiplication, for V k-plane in Rn gives A.V = W . This

action is transitive: Let V be a k-plane in Rn spanned by the first k vectors of the canonical basis

{e1, ..., en} of Rn. Let W be a k-plane in Rn spanned by the first k vectors of an orthonormal
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basis {e′1, ..., e′n} of Rn if A is the matrix that corresponds to the linear map that sends each ei

to e′i, then A ∈ O(n) and AV = W The isotropy subgroup of the subspace V is:

{

(
A1 0

0 A2

)
, A1 ∈ O(k) and A2 ∈ O(n− k)}

Thus Gk,n(R) is diffeomorphic to O(n)/(O(k)×O(n− k).

Example 21 (Flag Manifolds). Let E be a real vector space of dimension n > 1, and let

K = (k1, ..., km), where (ki)
m
i=1 satisfying 0 < k1 < ... < km < n. A flag in E of type K is a

nested sequence of linear subspaces V1 ⊂ V2 ⊂ ... ⊂ Vm ⊂ E, with dimVi = ki for each i. The

set of flag of type K in E is denoted by FK(E), we have GL(E) acts transitively on FK(E).

1.5 Invariant Riemannian metrics

Let G be a Lie group, we have G is a smooth manifold and it is a group, it is usual to use

Riemannian metrics of G with its group structure. These metrics have the property that the

left translations La : G −→ G are isometries for all a ∈ G. More precisely, we have:

Definition 1.5.1. A Riemannian metric on a Lie group G is called left invariant if for all

a ∈ G L∗
ag = g e.i. For all x, a ∈ G,

gax(TxLa(u), TxLa(v)) = gx(u, v), u, v ∈ TxG

Similarly, a Riemannian metric is right invariant if each Ra : G −→ G is an isometry.

Denote by g the Lie algebra of G, Ml(G) the set of left invariant metrics on G and M(g)

the set of scalar products on g.

Proposition 1.5.1. There is a one-to-one correspondence between left invariant metrics on a

Lie group G, and scalar products on its Lie algebra g i.e the map Φ : Ml(G) −→ M(g) is a

bijection.

Proposition 1.5.2. Let X, Y be two left invariant vector fields on G and g be a left invariant

metric on G. Then the function G −→ R, x 7−→ gx(Xx, Yx) is constant equal to ge(Xe, Ye).

Proof. Let x ∈ G, since X and Y are left invariant then Xx = TeLx(Xe) and Yx = TeLx(Ye).

And we have g is left invariant, we get that:

gx(Xx, Yx) = gx(TeLx(Xe), TeLx(Ye)) = L∗ge(Xe, Ye) = ge(Xe, Ye).
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Definition 1.5.2. We call Riemannian Lie group any pair (G, g) where G is a Lie group and

g is a left invariant metric on G.

Definition 1.5.3. A metric g on a Lie group G is said to be bi-invariant when it is both right

and left invariant.

Proposition 1.5.3. There is a one-to-one correspondence between bi- invariant metrics on

G and Ad-invariant scalar products on g, that is ⟨Ad(g)X,Ad(g)Y ⟩ = ⟨X, Y ⟩ for all g ∈
G,X, Y ∈ g.

Now, regarding the existence of bi-invariant metrics, here is a theorem which determines

the class of Lie groups admitting such metrics:

Theorem 1.5.1. (i) A connected Lie group carries a bi-invariant Riemannian metric if and

only if it is isomorphic to the cartesian product of a compact Lie group and an abelian Lie

group.

(ii) If the Lie algebra of a compact Lie group G is simple, then G admits a bi-invariant Rie-

mannian metric which is unique up to positive multiplicative constant.

In general, the existence of a bi-invariant metric on a Lie group is a precise problem and

there are examples where the answer is not affirmative. However, if (G, g) is a Riemannian Lie

group, there is a way to measure the obstruction for g to be bi-invariant. For this, we pose:

I(g) = {x ∈ G : Adx is an isometry of(g, ge = ⟨, ⟩)}

We have I(g) is a subgroup of G and that g is bi-invariant if and only if I(g) = G. On the

other hand, the group I(g) is closed in G and it therefore has a Lie group structure. We denote

in the following K(g) the Lie algebra of I(g).

Proposition 1.5.4. We have K(g) = {u ∈ g : adu + ad∗
u = 0} where ad∗

u adjoint of adu.

Proof. Let u ∈ K(g), we have ∀t ∈ R, exp(tu) ∈ I(g). In other words, we have for all v, w ∈ g

⟨Adexp(tu)v,Adexp(tu)w⟩ = ⟨v, w⟩

By deriving at t = 0 we obtain that:

⟨adu(v), w⟩+ ⟨v, adu(w)⟩ = 0.
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Thus adu + ad∗
u = 0.

Conversely, Let u ∈ g such that adu + ad∗
u = 0 we need to prove that u ∈ K(g), we define for

all t ∈ R

f(t) = ⟨Adexp(tu)v,Adexp(tu)w⟩

By calculation the derivative of f we have

f ′(t) = d
dt
⟨Adexp(tu)v,Adexp(tu)w⟩

= d
ds
|s=0⟨Adexp((s+t)u)v,Adexp((s+t)u)w⟩

= d
ds
|s=0⟨Adexp(su) ◦ Adexp(tu)v, dexp(su) ◦ Adexp(tu)w⟩

= ⟨adu ◦ Adexp(tu)v,Adexp(tu)w⟩+ ⟨Adexp(tu)v, adu ◦ Adexp(tu)w⟩
= 0

Thus f is constant, hence f(t) = f(0). Then Adexp(tu) is an isometry of (g, ge = ⟨, ⟩), this give
exp(tu) ∈ I(g) for all t ∈ R then u ∈ K(g).

Corollary 1.5.1. If the metric g is bi-invariant then adu is anti-adjoint with respect to ge = ⟨, ⟩
for all u ∈ g.

1.6 Connections on a Riemannian Lie group

Let (G, g) be a Riemannian Lie group and let g be the Lie algebra of the group G and ge = ⟨, ⟩.
Denote by ∇G the Levi-Civita connection of (G, g), RG the curvature tensor, QG sectional

curvature, RicG the Ricci tensor of (G, g), ricG the Ricci curvature of (G, g) and sG the scalar

curvature of (G, g).

Definition 1.6.1. The Levi-Civita product on Lie algebra (g, ⟨, ⟩) is the bilinear application

A : g× g −→ g, (u, v) 7−→ Auv given by the formula:

2⟨Auv, w⟩ = ⟨[u, v], w⟩+ ⟨[w, u], v⟩+ ⟨[w, v], u⟩

Proposition 1.6.1. Let g be a left invariant metric on a Lie group G. If {e1, ..., en} is an or-

thonormal basis of (g, ge), then the family {el1, ..., eln} defines an orthonormal coordinate system

of the Lie group (G, g).

Proposition 1.6.2. For all u, v ∈ g, the vector field ∇G
ulv

l is left invariant and we have:

∇G
ulv

l = (Auv)
l
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Proof. Let X = ul and Y = vl with u, v ∈ g. Let {e1, ..., en} be an orthonormal basis of (g, ge),

then the family {el1, ..., eln} defines an orthonormal coordinate system of (G, g). Then

∇G
ulv

l =
n∑

i=1

g(∇G
ulv

l, eli)e
l
i

For all 1 ≤ i ≤ n, by the Koszul formula 1.1 of the Levi-Civita connection we have

2g(∇G
ulv

l, eli) = ul.g(vl, eli) + vl.g(ul, eli)− eli.g(u
l, vl)

+g([ul, vl], eli) + g([eli, u
l], vl) + g([eli, v

l], ul).

By the proposition 1.5.2 we have g(vl, eli), g(u
l, eli) and g(u

l, vl) are constants then ul.g(vl, eli) =

vl.g(ul, eli) = eli.g(u
l, vl) = 0. Thus

2g(∇G
ulv

l, eli) = 2⟨Auv, ei⟩

Then

∇G
ulv

l =
n∑

i=1

g(∇G
ulv

l, eli)e
l
i =

(
n∑

i=1

⟨Auv, ei⟩ei

)l

= (Auv)
l

Let RG the curvature tensor of (G, g) then for all X, Y, Z ∈ X (G) we have:

RG(X, Y )Z = ∇G
[X,Y ] − [∇G

X ,∇G
Y ]Z

Definition 1.6.2. We call curvature of the Lie algebra (g, ⟨, ⟩g) the bilinear map Kg : g×g −→
End(g) given by the formula:

Kg(u, v) = A[u,v] − [Au, Av]

Proposition 1.6.3. For all u, v, w ∈ g, the vector field RG(ul, vl)wl is left invariant on G and

we have:

RG(ul, vl)wl = (Kg(u, v)w)
l.

Proof. Let u, v, w ∈ g. we have [ul, vl] = [u, v]l and ∇G
ulv

l = (Auv)
l. Then we have:

RG(ul, vl)wl = ∇G
[ul,vl]

wl −∇G
ul∇G

vl
wl +∇G

vl
∇G

ulw
l

= ∇G
[u,v]l

wl −∇G
ul(Avw)

l +∇G
vl
(Auw)

l

= (A[u,v]w)
l − (AuAvw)

l + (AvAuw)
l

= (Kg(u, v)w)
l
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Proposition 1.6.4. Let x ∈ G and u, v ∈ TxM , then we have:

QG
x (u, v) = QG

e (TxL
−1
x (u), TxL

−1
x (v))

The following proposition is a consequence of the elementary properties of the curvature

tensor RG.

Proposition 1.6.5. Let u, v, w, z ∈ g we have the following properties:

1. Kg(u, v) = −Kg(v, u) anti-symmetry

2. Kg(u, v)w +Kg(w, u)v +Kg(v, w)u = 0

3. ⟨Kg(u, v)w, z⟩ = ⟨Kg(w, z)u, v⟩

4. ⟨Kg(u, v)w, z⟩ = −⟨Kg(u, v)z, w⟩

Definition 1.6.3. The Ricci operator of the Lie algebra (g, ⟨, ⟩) is the linear map Ricg : g −→ g

given by:

⟨Ricg(u), v⟩ := tr(w 7−→ Kg(u,w)v) =
n∑

i=1

⟨Kg(u, ei)v, ei⟩.

where (ei)
n
i=1 an orthonormal basis of (g, ⟨, ⟩).

Proposition 1.6.6. For all u, v, w ∈ g, the vector field RicG(ul) is left invariant on G and we

have:

RicG(ul) = (Ricg(u))
l

Corollary 1.6.1. The scalar curvature sG is constant and the function ricG(ul, vl) is constant

for all u, v ∈ g.

1.7 Left invariant metrics on simply connected three di-

mensional unimodular Lie groups

In this section, we list all the three-dimensional simply connected Lie groups, and for each such

G we give all the left invariant Riemannian metrics on G up to automorphis. These results are

in reference [7].

They are sixe unimodular simply connected three dimensional unimodular Lie groups:
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1. The abelian case is isomorphic to R3.

2. The nilpotent Lie group Nil known as Heisenberg group whose Lie algebra will be denoted

by n. We have

Nil =



1 x z

0 1 y

0 0 1

 , x, y, z ∈ R

 and n =



0 x z

0 0 y

0 0 0

 , x, y, z ∈ R

 .

The Lie algebra n has a basis B0 = (X1, X2, X3) where

X1 =


0 1 0

0 0 0

0 0 0

 , X2 =


0 0 0

0 0 1

0 0 0

 and X3 =


0 0 1

0 0 0

0 0 0


and where the non-vanishing Lie brackets are [X1, X2] = X3.

3. SU(2) =

{(
a+ bi −c+ di

c+ di a− bi

)
, a2 + b2 + c2 + d2 = 1

}
and

su(2) =

{(
iz y + ix

−y + xi −zi

)
, x, y, z ∈ R

}
. The Lie algebra su(2) has a basis B0 =

(X1, X2, X3)

X1 =
1

2

(
0 i

i 0

)
, X2 =

1

2

(
0 1

−1 0

)
and X3 =

1

2

(
−i 0

0 i

)

and where the non-vanishing Lie brackets are

[X1, X2] = X3, [X2, X3] = X1 and [X3, X1] = X2.

4. The universal covering group P̃SL(2,R) of SL(2,R) whose Lie algebra is sl(2,R). The Lie

algebra sl(2,R) has a basis B0 = (X1, X2, X3) where

X1 =
1

2

(
0 1

1 0

)
, X2 =

1

2

(
1 0

0 −1

)
and X3 =

1

2

(
0 1

−1 0

)

and where the non-vanishing Lie brackets are

[X1, X2] = −X3, [X2, X3] = X1 and [X3, X1] = X2.
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5. The solvable Lie group Sol =



ex 0 y

0 e−x z

0 0 1

 , x, y, z ∈ R

 whose Lie algebra is sol =



x 0 y

0 −x z

0 0 0

 , x, y, z ∈ R

. The Lie algebra sol has a basis B0 = (X1, X2, X3) where

X1 =


0 0 1

0 0 0

0 0 0

 , X2 =


0 0 0

0 0 1

0 0 0

 and X3 =


1 0 0

0 −1 0

0 0 0


and where the non-vanishing Lie brackets are

[X3, X1] = X1 and [X3, X2] = −X2.

6. The universal covering group Ẽ0(2) of the Lie group

E0(2) =




cos(θ) sin(θ) x

− sin(θ) cos(θ) y

0 0 1

 , θ, x, y ∈ R

 .

Its Lie algebra is

e0(2) =




0 θ x

−θ 0 y

0 0 0

 , θ, y, z ∈ R

 .

The Lie algebra e0(2) has a basis B0 = (X1, X2, X3) where

X1 =


0 0 1

0 0 0

0 0 0

 , X2 =


0 0 0

0 0 1

0 0 0

 and X3 =


0 −1 0

1 0 0

0 0 0


and where the non-vanishing Lie brackets are

[X3, X1] = X2 and [X3, X2] = −X1.

In Table 1.1, we collect the informations on these Lie algebras we will use in the chapter

three. For each Lie algebra among the five Lie algebras above, we give the set of its homo-

morphisms and the equivalence classes of Riemannian metrics carried out by this Lie algebra.
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These equivalence classes were determined in [7, Theorems 3.3-3.7]. For n, sol and e0(2) the ho-

momorphisms can be determined easily. For su(2) and sl(2,R) an homomorphism is necessarily

an inner automorphism and these were determined in [4].

Lie algebra Non-vanishing Lie brackets Homomorphisms Equivalence classes

of Metrics

n [X1, X2] = X3


α1 α2 0

β1 β2 0

α3 β3 α1β2 − α2β1

 Diag(λ, λ, 1), λ > 0

e0(2) [X3, X1] = X2, [X3, X2] = −X1


0 0 a

0 0 b

0 0 γ

,


α −β a

β α b

0 0 1

 , Diag(1, µ, ν),


α β a

β −α b

0 0 −1

 , γ2 ̸= 1 0 < µ ≤ 1, ν > 0

sol [X3, X1] = X1, [X3, X2] = −X2


0 0 a

0 0 b

0 0 γ

,


α 0 a

0 β b

0 0 1



1 1 0

1 µ 0

0 0 ν

 ,


0 β a

α 0 b

0 0 −1

 , γ2 ̸= 1 Diag(1, 1, ν)

ν > 0, µ > 1

sl(2,R)
[X1, X2] = −X3, [X3, X1] = X2,

Rotxy.Boostxz.Boostyz
Diag(λ, µ, ν),

[X2, X3] = X1 0 < λ ≤ µ and ν > 0

su(2)
[X1, X2] = X3, [X3, X1] = X2,

Rotxy.Rotxz.Rotyz
Diag(λ, µ, ν),

[X2, X3] = X1 0 < ν ≤ µ ≤ λ

Table 1.1

Rotxy =


cos(a) sin(a) 0

− sin(a) cos(a) 0

0 0 1

 ,Rotxz =


cos(a) 0 sin(a)

0 1 0

− sin(a) 0 cos(a)

 ,Rotyz =


1 0 0

0 cos(a) sin(a)

0 − sin(a) cos(a)
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Boostxz =


cosh(a) 0 sinh(a)

0 1 0

sinh(a) 0 cosh(a)

 ,Boostyz =


1 0 0

0 cosh(a) sinh(a)

0 sinh(a) cosh(a)

 .

1.7.1 The abelian Lie group R3

We consider the 3-dimensional unimodular abelian Lie group R3 and R3 its Lie algebra. The

Lie algebra R3 has a basis B0 = (X1, X2, X3) such that

[X1, X2] = 0, [X3, X1] = 0 and [X3, X2] = 0.

Theorem 1.7.1 ([7]). Let ⟨ , ⟩ be a scalar product on R3. Then there exists an automorphism

ϕ of R3 such that

Mat(ϕ∗(⟨ , ⟩),B0) =


1 0 0

0 1 0

0 0 1

 ,

.

We have the set of homomorphisms of R3 is

H(R3) =M3(R
3).

1.7.2 The Heisenberg group Nil

We consider the 3-dimensional unimodular Lie group H and we denote by n its Lie algebra.

The Lie algebra n has a basis B0 = (X1, X2, X3) such that

[X1, X2] = X3, [X3, X1] = 0 and [X3, X2] = 0.

The following result will be useful later in chapter 3.

Theorem 1.7.2 ([7]). Let ⟨ , ⟩ be a scalar product on n. Then there exists an automorphism

ϕ of n such that

Mat(ϕ∗(⟨ , ⟩),B0) =


λ 0 0

0 λ 0

0 0 0

 ,

where 0 < λ.
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We determine now all the homomorphisms. Let ξ : n −→ n be an homomorphism. Then ξ

preserves [n, n] and hence

ξ(X1) = α1X1 + β1X2 + γ1X3, ξ(X2) = α2X1 + β2X2 + γ2X3 and ξ(X3) = γX3.

Then ξ is an homomorphism if and only if

γ = α1β2 − α2β1

Then, the set of homomorphisms of n is

H(n) =



α1 α2 0

β1 β2 0

γ1 γ2 α1β2 − α2β1

 , α1, α2, β1, β2, γ1, γ2 ∈ R,

 .

1.7.3 The solvable Lie group Ẽ0(2)

We consider the 3-dimensional unimodular Lie group E0(2) = R2 ⋊ SO(2,R) and we denote by

g = R2 ⋊ so(2,R) its Lie algebra. The Lie algebra g has a basis B0 = (X1, X2, X3) such that

[X1, X2] = 0, [X3, X1] = X2 and [X3, X2] = −X1.

The following result will be useful later.

Theorem 1.7.3 ([7]). Let ⟨ , ⟩ be a scalar product on g. Then there exists an automorphism

ϕ of g such that

Mat(ϕ∗(⟨ , ⟩),B0) =


1 0 0

0 µ 0

0 0 ν

 ,

where 0 < µ ≤ 1 and ν > 0.

We determine now all the homomorphisms. Let ξ : g −→ g be an homomorphism. Then ξ

preserves [g, g] and hence

ξ(X1) = α1X1 + β1X2, ξ(X2) = α2X1 + β2X2 and ξ(X3) = α3X1 + β3X3 + γX3.
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Then ξ is an homomorphism if and only if

α1 − γβ2 = 0,

γα1 − β2 = 0,

α2 + β1γ = 0,

γα2 + β1 = 0.

We can deduce easily that the set of homomorphisms of g is

H(g) =



0 0 a

0 0 b

0 0 γ

 ,


α −β a

β α b

0 0 1

 ,


α β a

β −α b

0 0 −1

 , a, b, α, β, γ ∈ R, γ ̸= 1

 .

1.7.4 The solvable Lie group Sol

We consider the 3-dimensional unimodular Lie group Sol and we denote by sol = R2 ⋊ R its

Lie algebra. The Lie algebra sol has a basis B0 = (X1, X2, X3) such that

[X1, X2] = 0, [X3, X1] = X1 and [X3, X2] = −X2.

The following result will be useful later.

Theorem 1.7.4 ([7]). Let ⟨ , ⟩ be a scalar product on sol. Then there exist two automorphisms

ϕ1 and ϕ2 of sol such that

Mat(ϕ∗
1(⟨ , ⟩),B0) =


1 0 0

0 1 0

0 0 ν

 ,

and

Mat(ϕ∗
2(⟨ , ⟩),B0) =


1 1 0

1 µ 0

0 0 ν

 ,

where µ > 1 and ν > 0.

We determine now all the homomorphisms. Let ξ : sol −→ sol be an homomorphism. Then

ξ preserves [sol, sol] and hence

ξ(X1) = α1X1 + β1X2, ξ(X2) = α2X1 + β2X2 and ξ(X3) = α3X1 + β3X3 + γX3.
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Then ξ is an homomorphism if and only if

α1(γ − 1) = 0,

β1(γ + 1) = 0,

α2(γ + 1) = 0,

β2(γ − 1) = 0.

We can deduce easily that the set of homomorphisms of sol is

H(sol) =



0 0 a

0 0 b

0 0 γ

 ,


α 0 a

0 β b

0 0 1

 ,


0 β a

α 0 b

0 0 −1

 , a, b, α, β, γ ∈ R, γ2 ̸= 1

 .

1.7.5 The simple Lie group P̃SL(2, R)

We consider the 3-dimensional unimodular Lie group SL(2,R) and we denote by sl(2,R) its Lie

algebra. The Lie algebra sl(2,R) has a basis B0 = (X1, X2, X3) such that

[X1, X2] = 2X3, [X3, X1] = 2X2 and [X3, X2] = 2X1.

The following result will be useful later.

Theorem 1.7.5 ([7]). Let ⟨ , ⟩ be a scalar product on sl(2,R). Then there exists an automor-

phism ϕ of sl(2,R) such that

Mat(ϕ∗(⟨ , ⟩),B0) =


λ 0 0

0 µ 0

0 0 ν

 ,

where 0 < ν ≤ µ and λ > 0.

1.7.6 The simple Lie group SU(2)

We consider the 3-dimensional unimodular Lie group SU(2) and we denote by su(2) its Lie

algebra. The Lie algebra su(2) has a basis B0 = (X1, X2, X3) such that

[X1, X2] = X3, [X3, X1] = X2 and [X3, X2] = −X1.

The following result will be useful later.
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Theorem 1.7.6 ([7]). Let ⟨ , ⟩ be a scalar product on su(2). Then there exists an automorphism

ϕ of su(2) such that

Mat(ϕ∗(⟨ , ⟩),B0) =


λ 0 0

0 µ 0

0 0 ν

 ,

where 0 < ν ≤ µ ≤ λ.
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Chapter 2
Harmonic and biharmonic homomorphisms

between Riemannian Lie groups

Let ϕ : (M, g) −→ (N, h) be a smooth map between two Riemannian manifolds with m =

dimM and n = dimN . We denote by ∇M and ∇N the Levi-Civita connexions associated

respectively to g and h and by T ϕN the vector bundle over M pull-back of TN by ϕ. It is an

Euclidean vector bundle and the tangent map of ϕ is a bundle homomorphism dϕ : TM −→
T ϕN . Moreover, T ϕN carries a connexion ∇ϕ pull-back of ∇N by ϕ and there is a connexion

on the vector bundle End(TM, T ϕN) given by

(∇XA)(Y ) = ∇ϕ
XA(Y )− A

(
∇M

X Y
)
, X, Y ∈ Γ(TM), A ∈ Γ

(
End(TM, T ϕN)

)
.

The map ϕ is called harmonic if it is a critical point of the energy E(ϕ) = 1
2

∫
M
|dϕ|2νg. The

corresponding Euler-Lagrange equation for the energy is given by the vanishing of the tension

field

τ(ϕ) = trg∇dϕ =
m∑
i=1

(∇Ei
dϕ)(Ei), (2.1)

where (Ei)
m
i=1 is a local frame of orthonormal vector fields. Note that τ(ϕ) ∈ Γ(T ϕN). The

map ϕ is called biharmonic if it is a critical point of the bienergy of ϕ defined by E2(ϕ) =
1
2

∫
M
|τ(ϕ)|2νg. The corresponding Euler-Lagrange equation for the bienergy is given by the

vanishing of the bitension field

τ2(ϕ) = −trg(∇ϕ)2. , .τ(ϕ)−trgR
N(τ(ϕ), dϕ( . ))dϕ( . ) = −

m∑
i=1

(
(∇ϕ)2Ei,Ei

τ(ϕ) +RN(τ(ϕ), dϕ(Ei))dϕ(Ei)
)
,
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(2.2)

where (Ei)
m
i=1 is a local frame of orthonormal vector fields, (∇ϕ)2X,Y = ∇ϕ

X∇
ϕ
Y −∇ϕ

∇M
X Y

and RN

is the curvature of ∇N given by

RN(X, Y ) = ∇N
X∇N

Y −∇N
Y ∇N

X −∇N
[X,Y ].

2.1 General properties and first examples

Let (G, g) be a Riemannian Lie group, i.e., a Lie group endowed with a left invariant Riemannian

metric. If g = TeG is its Lie algebra and ⟨ , ⟩g = g(e) then there exists a unique bilinear map

A : g× g −→ g called the Levi-Civita product associated to (g, ⟨ , ⟩g) given by the formula:

2⟨Auv, w⟩g = ⟨[u, v]g, w⟩g + ⟨[w, u]g, v⟩g + ⟨[w, v]g, u⟩g. (2.3)

A is entirely determined by the following properties:

1. for any u, v ∈ g, Auv − Avu = [u, v]g,

2. for any u, v, w ∈ g, ⟨Auv, w⟩g + ⟨v, Auw⟩g = 0.

If we denote by uℓ the left invariant vector field on G associated to u ∈ g then the Levi-Civita

connection associated to (G, g) satisfies ∇uℓvℓ = (Auv)
ℓ. The couple (g, ⟨ , ⟩g) defines a vector

say U g ∈ g by

⟨U g, v⟩g = tr(adv), for any v ∈ g. (2.4)

One can deduce easily from (2.3) that, for any orthonormal basis (ei)
n
i=1 of g,

U g =
n∑

i=1

Aeiei. (2.5)

Note that g is unimodular if and only if U g = 0.
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In the following, we give (G, g) and (H, h) two Riemannian Lie groups of respective Lie

algebras g and h. Let ⟨, ⟩g = ge and ⟨, ⟩h = he. Let∇G and∇H be the Levi-Civita connections on

(G, g) and (H, h) and let A and B denote the Levi Civita products respectively on the Euclidean

Lie algebras (g, ⟨, ⟩g) and (h, ⟨, ⟩h). Let ϕ : (G, g) −→ (H, h) be a Lie group homomorphism

between two Riemannian Lie groups. Let ξ : g −→ h The differential of ϕ at e, it is a Lie

algebra homomorphism. There is a left action of G on Γ(T ϕH) given by

(a.X)(b) = Tϕ(ab)Lϕ(a−1)X(ab), a, b ∈ G,X ∈ Γ(T ϕH).

A section X of T ϕH is called left invariant if, for any a ∈ G, a.X = X. For any left invariant

section X of T ϕH, we have for any a ∈ G, X(a) = (X(e))ℓ(ϕ(a)). Thus the space of left

invariant sections is isomorphic to the Lie algebra h. Since ϕ is a homomorphism of Lie groups

and g and h are left invariant, one can see that τ(ϕ) and τ2(ϕ) are left invariant and hence ϕ

is harmonic (resp. biharmonic) iff τ(ϕ)(e) = 0 (resp. τ2(ϕ)(e) = 0).

Remark 6. The map h −→ R given by u 7−→ tr(ξ∗ ◦ adu ◦ ξ) defines a linear form on h, then

there exists U ξ ∈ h such that for all u ∈ h:

⟨U ξ, u⟩h = tr(ξ∗ ◦ adu ◦ ξ)

Now, one can see that
τ(ξ) := τ(ϕ)(e) = U ξ − ξ(U g),

τ2(ξ) := τ2(ϕ)(e) = −
n∑

i=1

(
Bξ(ei)Bξ(ei)τ(ξ) +KH(τ(ξ), ξ(ei))ξ(ei)

)
+Bξ(Ug)τ(ξ),

(2.6)

where B is the Levi-Civita product associated to (h, ⟨ , ⟩h),we have

U ξ =
n∑

i=1

Bξ(ei)ξ(ei), (2.7)

(ei)
n
i=1 is an orthonormal basis of g andKH is the curvature of B given byKH(u, v) = [Bu, Bv]−

B[u,v]. So we get the following proposition.

Proposition 2.1.1. Let ϕ : G −→ H be an homomorphism between two Riemannian Lie

groups. Then ϕ is harmonic (resp. biharmonic) iff τ(ξ) = 0 (resp. τ2(ξ) = 0), where ξ : g −→ h

is the differential of ϕ at e.
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Proposition 2.1.2. Let ϕ : (G, g) −→ (H, h) be an homomorphism between two Riemannian

Lie groups where H is abelian. Then ϕ is biharmonic and it is harmonic when g is unimodular.

In particular, any character X : G −→ R is biharmonic and it is harmonic when g is unimodular

Proof. Since the Lie groupH is abelian, then the Lie algebra h is abelian then we have [u, v]h = 0

for all u, v ∈ h. Thus:

2⟨Buv, w⟩h = ⟨[u, v], w⟩h + ⟨[w, v], u⟩h + ⟨[w, u], v⟩h

Then B = 0. The formula of the fields of bi-tension given in (2.6) gives that τ2(ξ) = 0 then ϕ

is biharmonic. If we suppose that g is unimodular then tr(adgu) = 0 for all u ∈ g then we have

U g = 0. Since B = 0 then U ξ = 0. The formula of the fields of tension given in the (2.6) gives

that τ2(ξ) = 0 then ϕ is harmonic.

Lemma 2.1.1. For all u ∈ h we have the formula:

⟨τ2(ξ), u⟩h = tr(ξ∗ ◦ (adu + ad∗u) ◦ adτ(ξ) ◦ ξ)− ⟨[u, τ(ξ)]h, τ(ξ)⟩h − ⟨[τ(ξ), U ξ]h, u⟩h

Lemma 2.1.2. For all u ∈ K(h), ⟨U ξ, u⟩h = 0. In other words U ξ ∈ K(h)⊥

Proposition 2.1.3. Let ϕ : G −→ H be an homomorphism between two Riemannian Lie

groups. Then:

(i) If the metric on G is bi-invariant and ϕ is a submersion then ϕ is harmonic.

(ii) If the metric on H is bi-invariant then ϕ is biharmonic, it is harmonic when g is unimodular.

Proof. For the point (i), since the metric g of G is bi-invariant then adu is skew-symmetric with

respect to ⟨, ⟩g for all u ∈ g we have:

⟨Auu, v⟩g = ⟨[u, v], u⟩g = ⟨aduv, u⟩g = −⟨v, aduu⟩g = 0.

Thus Auu = 0 for all u ∈ g and in particular U g = 0. On the other hand let v ∈ h, since ϕ is a

submersion then ξ : g −→ h is an homomorphism of Lie algebras surjective, then exists u ∈ g

such that v = ξ(u) and adv ◦ ξ = adξ(u) ◦ ξ = ξ ◦ adu, which gives that:

⟨U ξ, v⟩h = tr(ξ∗ ◦ (adv) ◦ ξ) = tr(ξ∗ ◦ ξ ◦ (adu))

since adu is skew-symmetric and ξ∗ ◦ ξ is symmetric. Thus U ξ = 0, hence τ(ξ) = 0.

For the point (ii), by lemma 2.1.1 we have for all u ∈ h:

⟨τ2(ξ), u⟩h = tr(ξ∗ ◦ (adu + ad∗u) ◦ adτ(ξ) ◦ ξ)− ⟨[u, τ(ξ)]h, τ(ξ)⟩h − ⟨[τ(ξ), U ξ]h, u⟩h
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The metric on H is bi-invariant then K(h) = h and hence, according to Lemma 2.1.2, U ξ = 0.

And we have

⟨[u, τ(ξ)]h, τ(ξ)⟩h = −⟨adτ(ξ)u, τ(ξ)⟩h = ⟨adτ(ξ)τ(ξ), u⟩h = 0

Thus τ2(ξ) = 0, hence ϕ is biharmonic. If g is unimodular, then U g = 0 and as U ξ = 0 we

conclude that τ(ξ) = 0, thus ϕ is harmonic.

Example 22. Let (G, g) be a Riemannian Lie group endowed with a bi-invariant metric g. Let

N be a closed subgroup in G, then G/N has a unique Lie group structure such that the canonical

projection π : G −→ G/N is a submersion. By applying proposition (2.1.3), we obtain that

for any left invariant metric h on G/N , the canonical projection π : (G, g) −→ (G/N, h) is

harmonic.

Example 23. Let G be a compact Lie group and ρ : G −→ GL(V,R) a finite representation of

G. Then there exists a definite positive product ⟨, ⟩ on V which is G-invariant, thus ρ : G −→
SO(V, ⟨, ⟩). Now SO(V, ⟨, ⟩) has a bi-invariant Riemannian metric h and hence for any left

invariant Riemannian metric g on G, ρ : (G, g) −→ (SO(V, ⟨, ⟩), h) is harmonic.

2.2 Harmonic automorphisms of a Riemannian Lie group

In this section, we denote by H(g) the set of a ∈ G such that ca is harmonic, i.e. that:

H(g) = {a ∈ G, τ(Ada) = 0}.

Note that H(g) is not in general a subgroup of G since the computations of two harmonic

automorphisms is not necessarily harmonic.

Remark 7. 1. We have all isometry is harmonic then I(g) ⊂ H(g).

2. For all a ∈ Z(G) we have ca = IdG this gives in particular that Z(G) ⊂ I(g) ⊂ H(g).

3. Let φ, ψ : G −→ G be automorphisms of Riemannian Lie groups. We assume that φ is

harmonic and ψ is an isometry. Then φ ◦ ψ and ψ ◦ φ are harmonics.

Proposition 2.2.1. The set H(g) is stable by the actions to the right and to the left of the

group I(g).

As a consequence, we obtain that the quotient H(g)/I(g) is defined.

38



2.2. HARMONIC AUTOMORPHISMS OF A RIEMANNIAN LIE GROUP

Lemma 2.2.1. If G is unimodular, then I(g) is an open subset of H(g). In particular, the

quotient space H(g)/I(g) is discrete.

Corollary 2.2.1. If G is compact, then H(g)/I(g) is finite.

Theorem 2.2.1 ([3]). Let (G, g) be a connected Riemannian Lie group such that H(g) = G.

Then the Riemannian metric g is bi-invariant.

Theorem 2.2.2 ([3]). If G is a connected Lie group which is abelian or 2-step nilpotent then

H(g) = I(g) = Z(G).

2.2.1 The harmonic cone of left invariant Riemannian metric

Now, we consider the following problem: Let (G, g) Riemannian Lie group, we want to deter-

mine all the pairs (φ, h) such that φ : (G, g) −→ (G, h) is harmonic where h is a left-invariant

metric on G and φ is an automorphism of the Lie group G.

Proposition 2.2.2. φ : (G, g) −→ (G, h) is harmonic if and only if IdG : (G, g) −→ (G,φ∗h)

is harmonic

Proof. It is clear that ψ : (G,φ∗h) −→ (G, h) is an isometry, and we have φ = ψ ◦ IdG. We

then conclude from the point 3 in remark 7 the automorphism φ : (G, g) −→ (G, h) is harmonic

if and only if IdG : (G, g) −→ (G,φ∗h) is harmonic.

Let denote by CH(g) the set of left invariant metrics h ∈ Ml(G) such that IdG : (G, g) −→
(G, h) is harmonic. The solution of the problem is equivalent to the determination of the

group Aut(G) and the set CH(g) of the left invariant Riemannian metric h on G such that

IdG : (G, g) −→ (G, h) is harmonic.

Proposition 2.2.3. Let (G, g) be a Riemannian Lie group. Then h ∈ CH(g) if and only if,

for any u ∈ g,

tr(J ◦ adu) = tr(adJu),

where J : g −→ g is a positive definite symmetric endomorphism given by he(u, v) = ge(Ju, v)

for any u, v ∈ g.
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Proof. Let ge = ⟨, ⟩1, he = ⟨, ⟩2, A the Levi-Civita product of (g, ⟨, ⟩1) and B the Levi-Civita

product of (g, ⟨, ⟩1) . We have, for any u ∈ g, and for any orthonormal basis (ei)
n
i=1 of ⟨, ⟩1:

⟨τ(Idg), u⟩2 =
∑n

i=1⟨Beiei, u⟩2 −
∑n

i=1⟨Aeiei, u⟩2
=
∑n

i=1⟨[u, ei]ei, ⟩2 −
∑n

i=1⟨Aeiei, Ju⟩1
=
∑n

i=1⟨J [u, ei], ei⟩1 −
∑n

i=1⟨[Ju, ei], ei⟩1
= tr(J ◦ adu)− tr(adJu).

Corollary 2.2.2. CH(g) is a convex cone which contains g.

Definition 2.2.1. We call CH(g) the harmonic cone of g and dimCH(g) the harmonic di-

mension of g, where dimCH(g) is the dimension of the subspace spanned by CH(g).

Proposition 2.2.4. Let (G, g) be a Riemannian Lie group. Then CH(g) = Ml(G) if and only

if g is bi-invariant.

Proof. Suppose that g is bi-invariant, Proposition (2.1.3) gives that for any left-invariant metric

h, IdG : (G, g) −→ (G, h) is harmonic and we have that CH(g) = Ml(G). Conversely, we

assume that CH(g) = Ml(G). Then for all a ∈ G, c∗a(g) ∈ CH(g) what is equivalent to saying

according to proposition (2.2.2) that Ada : (G, g) −→ (G, g) and consequently a ∈ H(g). Thus

H(g) = G and Theorem (2.2.1) then gives that g is bi-invariant.

Theorem 2.2.3. Let (G, g) be a unimodular Riemannian Lie group. Then

dimCH(g) =
n(n− 1)

2
+ dimK(g)

, where n is the dimension of the Lie group G.

Proof. The scalar product ⟨, ⟩g of g induces a scalar product ⟨, ⟩ of gl(g) given by:

⟨A,B⟩ = tr(A∗B)

Let define the linear map φ : g −→ gl(g) given by u 7−→ adu+ad
∗
u. It is clear that kerφ = K(g)

and we have φ induces an injective linear map ψ : g/K(g) −→ gl(g) such that ψ ◦ π = φ with

π : g −→ g/K(g) the canonical projection. We give J ∈ Sym+(g) then:

tr(J∗ ◦ (adu + ad∗u)) = tr(J∗ ◦ adu) + tr(J∗ ◦ ad∗u) = tr(J ◦ adu) + tr(adu ◦ J) = 2tr(J ◦ adu).
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Since G is unimodular then tr(adJu) = 0 and from proposition (2.2.3), we get that:

CH(g) = {J ∈ Sym+(g), tr(J ◦ adu) = 0 for all u ∈ g}.

This formula gives that J ∈ CH(g) if and only if ⟨J, adu + ad∗u⟩ = 0, thus:

CH(g) = Sym+(g) ∩ (ψ(g/K(g)))⊥

where (ψ(g/K(g)))⊥ denotes the orthogonal of (ψ(g/K(g))) for the scalar product ⟨, ⟩. On

the other hand, since Sym+(g) is an open of Sym(g), then CH(g) is an open of vector space

Sym(g) ∩ (ψ(g/K(g)))⊥ then CH(g) spanned this space.

dimCH(g) = dimSym(g) ∩ (ψ(g/K(g)))⊥

since ψ(g/K(g)) ⊂ Sym(g), then gl(g) = Sym(g) + (ψ(g/K(g)))⊥. Thus

dimSym(g)∩(ψ(g/K(g)))⊥ = dimSym(g)+dim(ψ(g/K(g)))⊥−dim gl(g) = dimSym(g)+dim(ψ(g/K(g)))

Since ψ is injective, we get that dim(ψ(g/K(g))) = dim(g/K(g)) = dim g− dimK(g). hence

dimCH(g) =
n(n− 1)

2
+ dimK(g)

2.3 Riemannian immersions between Riemannian Lie groups

Consider a homomorphism ξ : (g, ⟨, ⟩g) −→ (h, ⟨, ⟩h) and we assume that ξ is an isometry. Then

ξ is injective and we put h0 := ξ(g), it is clear that h0 is a Lie subalgebra of h. The scalar

product ⟨, ⟩h induces by restriction a scalar product ⟨, ⟩h0 on Lie algebra h0. Then write:

h = h0 ⊕ h⊥0

Then any element w ∈ h decomposes in a unique way in the form w = w0 + w⊥ where

w0 ∈ h0 and w⊥ ∈ h⊥0 . In particular we obtain that for all u, v ∈ h0

Buv = (Buv)
0 + (Buv)

⊥

Proposition 2.3.1. The Levi-Civita product on (h0, ⟨, ⟩h0) is given by the bilinear map B0 :

h0 × h0 −→ h0, (u, v) 7−→ (Buv)
0 And, we have for all u, v ∈ g:

B0
ξ(u)ξ(v) = ξ(Auv)
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The map B⊥ : h0 × h0 −→ h0 given by (u, v) 7−→ (Buv)
⊥ is symmetric bilinear and the

vector Hξ(g) =
∑m

i=1B
⊥
ei
ei does not depend on the orthonormal basis (ei)1≤i≤m chosen on h0.

Definition 2.3.1. The vector Hξ(g) is called the mean curvature vector of ξ. It is an element

of ξ(g)⊥

Proposition 2.3.2. The mean curvature vector Hξ(g) and the tension field τ(ξ) are equal.

Proof. Let (ei)1≤i≤m be a orthonormal basis of (g, ⟨, ⟩g, so it is clear that the homomorphism

ξ : (g, ⟨, ⟩g) −→ (h0, ⟨, ⟩h0) is an isomorphism of Euclidean spaces, and we have (ξ(ei)), 1 ≤ i ≤ m

is an orthonormal basis of (h0, ⟨, ⟩h0). By the proposition 2.3.1 we have:

Hξ(g) =
m∑
i=1

B⊥
ξ(ei)

ξ(ei) =
m∑
i=1

Bξ(ei)ξ(ei)−B0
ξ(ei)

ξ(ei) =
m∑
i=1

Bξ(ei)ξ(ei)− ξ(Aeiei) = τ(ξ)

Proposition 2.3.3. The homomorphism φ : (G, g) −→ (H, h) is a Riemannian immersion if

and only if ξ : (g, ⟨, ⟩g) −→ (h, ⟨, ⟩h) is an isometry.

Corollary 2.3.1. Let φ : G −→ H be a homomorphism between two Riemannian Lie groups

which is also a Riemannian immersion. Then φ is harmonic if and only if Hξ(g) = 0.

Proposition 2.3.4. Let φ : G −→ H be a homomorphism between two Riemannian Lie groups.

Suppose that φ is a Riemannian immersion, both g and h are unimodular and dimH = dimG+

1. Then φ is harmonic.

Proof. Since dim h = dim g + 1 and ξ : g −→ h is injective, then dim ξ(g)⊥ = 1 hence ξ(g)⊥ =

vect(f), and we have Hξ(g) ∈ ξ(g)⊥ then we get

Hξ(g) = αf, α ∈ R

Choose an orthonormal basis (e1, ..., en) of g and complete by f to get an orthonormal basis

(ξ(e1), ..., ξ(en), f) of h. On the other hand we have g and h are unimodular then U g = 0 and

U h = 0.

U h = Bff +
n∑

i=1

Bξ(ei)ξ(ei) = Bff + U ξ

then we get U ξ = −Bff , then τ(ξ) = −Bff . Thus

⟨τ(ξ), τ(ξ)⟩h = ⟨−Bff, αf⟩h = −α⟨Bff, f⟩h = 0

Then φ is harmonic.
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Proposition 2.3.5. Let φ : G −→ H be a homomorphism between two Riemannian Lie groups.

Suppose that φ is a Riemannian immersion, [g, g] = g, any derivation of g is inner and ξ(g) is

an ideal of h. Then φ is harmonic.

Proof. Since ξ(g) is an ideal of h we obtain that the restriction ãdu of adu on ξ(g) defines a

derivation of ξ(g) for all u ∈ h. On the other hand, ξ : g −→ ξ(g) is an isomorphism of Lie

algebras and since any derivation of g is inner then any derivation of ξ(g) is inner. Then denote

by B0 the Levi-Civita product on (ξ(g), ⟨, ⟩h) and fix an orthonormal basis {e1, ..., en} on g, we

get that {ξ(e1), ..., ξ(en)} is an orthonormal basis of ξ(g). Thus for all u ∈ ξ(g)⊥ , we have:

⟨Hξ(g), u⟩h =
n∑

i=1

⟨Bξ(ei)ξ(ei)−B0
ξ(ei)

ξ(ei), u⟩h =
n∑

i=1

⟨Bξ(ei)ξ(ei), u⟩h =
n∑

i=1

⟨aduξ(ei), ξ(ei)⟩h = tr(ãdu).

Since [g, g] = g then [ξ(g), ξ(g)] = ξ(g), we have ãdu is an inner derivation of ξ(g), then

ãdu = ad[u1,u2] with u1, u2 ∈ ξ(g) and therefore trãdu = 0 for all u ∈ ξ(g)⊥. We then conclude

that Hξ(g) = 0, Corollary (2.3.1) gives that this is equivalent to saying that φ is harmonic.

2.4 Harmonic and Biharmonic submersions between Rie-

mannian Lie groups

Let φ : (G, g) −→ (H, h) be a homomorphism of Riemannian Lie groups. Recall that φ is a

submersion if Taφ is surjective for all a ∈ G.

Proposition 2.4.1. The homomorphism φ : (G, g) −→ (H, h) is a submersion if and only if

the homomorphism ξ : g −→ h is surjective.

Proof. It is clear by the definition of submersion that if φ is a submersion, then ξ is surjective.

Conversely, we suppose that ξ : g −→ h is surjective, it is clear that for all a ∈ G we have

φ ◦ La = Lφ(a) ◦ φ, passaging to the differential that Taφ ◦ TeLa = TeLφ(a) ◦ ξ. Thus Taφ is

surjective for all a ∈ G, hence φ is a submersion.

In the following we suppose that φ(G, g) −→ (H, h) is a submersion. Let G0 = kerφ and

g0 = ker ξ. Since G0 is a normal subgroup in G then G/G0 is a Lie group and φ induces a

homomorphism of Lie groups φ̄ : G/G0 −→ H. Moreover, g0 is an ideal of g and g/g0 has a

Lie algebra structure such that the canonical projection π : g −→ g/g0 is a homomorphism of

Lie algebras. Finally, we put ξ̄ := Teφ̄.
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Proposition 2.4.2. Lie algebras Lie(G/G0) and g/g0 are isomorphic

Proof. The canonical projection p : G −→ G/G0 is a homomorphism of Lie groups, we obtain

a homomorphism of Lie algebras ϕ : g −→ Lie(G/G0) by setting ϕ := Tep. On the other hand

we have kerϕ = g0, since if v ∈ g0 then exp(tv) ∈ G0 for all t ∈ R then:

exp(tϕ(v)) = p ◦ exp(tv) = e

By taking the derivative at t = 0 of the previous formula we get that ϕ(v) = 0 then v ∈ kerϕ.

Conversely, if v ∈ kerϕ then ϕ(v) = 0 hence exp(tϕ(v)) = p ◦ exp(tv) = e for all t ∈ R.

That is to say that exp(tv) ∈ G0 for all t ∈ R then v ∈ g0. In summary we have kerϕ = g0

then ϕ induces an injective homomorphism of Lie algebras ϕ̄ : g/g0 −→ Lie(G/G0). We have

dim g/g0 = dimLie(G/G0). Thus ϕ̄ is an isomorphism of Lie algebras.

Denoted by ξ̄ : g/g0 −→ h then we have:

Proposition 2.4.3. 1. The homomorphism of Lie algebras ξ factors in the form ξ = ξ̄ ◦ π.

2. The linear map ξ̄ : g/g0 −→ h is an isomorphism of Lie algebras.

We denote by r : g/g0 −→ g⊥0 the inverse of , the restriction of π to g⊥0 . Thus r∗⟨, ⟩g is an

Euclidean product on g/g0 which defines a left invariant Riemannian metric g0 on G/G0.

Proposition 2.4.4. With the notations above, we have

τ(ξ) = τ(ξ̄)− ξ(Hker ξ),

where ξ̄ : (g/g0, r
∗⟨, ⟩g) −→ (h, ⟨, ⟩h) Hker ξ is the mean curvature vector of the inclusion of ker ξ

in (g, ⟨, ⟩g).

Proof. We have g = g0 ⊕ g⊥0 . Choose an orthonormal basis (fi)
p
i=1 of g0 and an orthonormal

basis (ei)
q
i=1 of g⊥0 . If A and B denote the Levi-Civita products of g and h respectively, we

have:

τ(ξ) =

q∑
i=1

Bξ(ei)ξ(ei)−
q∑

i=1

ξ(Aeiei)−
p∑

i=1

ξ(Afifi).

Let A0 be the Levi-Civita product of g0 , we get

ξ(Hker ξ) = ξ

(
p∑

i=1

(Afifi)
⊥

)
=

p∑
i=1

ξ(Afifi − A0
fi
fi)
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On the other hand, the canonical projection πg⊥0 : (g⊥0 , ⟨, ⟩g) −→ (g/g0, r
∗⟨, ⟩g) is an isometry

then (π(ei))
q
i=1 is an orthonormal basis of (g/g0, r

∗⟨, ⟩g). Since ξ = ξ̄ ◦ π, we get that:

U ξ =

q∑
i=1

Bξ(ei)ξ(ei) =

q∑
i=1

Bξ̄(π(ei))ξ̄(π(ei)) = U ξ̄

Thus

τ(ξ) = U ξ̄ − ξ

(
q∑

i=1

Aeiei

)
− ξ(Hg0

To finish, it suffices to show that ξ̄(U g/g0) = ξ (
∑q

i=1Aeiei), but this comes from the fact that

π(Auv) = Āπ(u)π(v) for all u, v ∈ g⊥0 because πg⊥0 : (g⊥0 , ⟨, ⟩g) −→ (g/g0, r
∗⟨, ⟩g) is an isometry

with Ā is the Levi Civita product on (g/g0, r
∗⟨, ⟩g) so:

ξ̄(U g/g0) =

q∑
i=1

ξ̄(Āπ(ei)π(ei)) =

q∑
i=1

ξ̄ ◦ π(Aeiei) =

q∑
i=1

ξ(Aeiei)

Corollary 2.4.1. Let τ2(ξ̄) be the bitension field of ξ̄ : (g/g0, r
∗⟨, ⟩g) −→ (h, ⟨, ⟩h). Then we

have:

τ2(ξ)− τ2(ξ̄) =
n∑

i=1

(Bξ(ei)Bξ(ei)ξ(H
ker ξ) +Kh(ξ(H

ker ξ), ξ(ei))ξ(ei))−Bξ(Ug)ξ(H
ker ξ).

where (ei)
n
i=1) is an orthonormal basis of (g, ⟨, ⟩).

Proposition 2.4.5. Let φ : (G, g) −→ (H, h) be a submersion between two Riemannian Lie

groups. Then:

(i) If ker ξ is minimal then φ is harmonic (resp. biharmonic) if and only if φ̄ is harmonic

(resp. biharmonic).

(ii) If φ̄ is harmonic then φ is harmonic if and only if ker ξ is minimal.

Let φ : (G, g) −→ (H, h) be a submersion between two connected Riemannian Lie groups.

Then we have φ̄ : G/G0 −→ H is an isomorphism. If we endow G/G0 with the left invariant

metric φ̄∗h we obtain then that φ̄ : (G/G0, φ̄
∗h) −→ (H, h) is an isometry. So φ is harmonic

(resp. biharmonic) if and only if p : (G, g) −→ (G/G0, φ
∗h) is harmonic (resp. biharmonic).

So the study of harmonic or biharmonic submersion between two connected Riemannian Lie

groups is equivalent to the study of the projections p : (G, g) −→ (G/G0, h) where (G, g) is a

connected Lie group, G0 is a normal subgroup and h is left invariant Riemannian metric on
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G/G0. To build harmonic or biharmonic such projections, let first understand how G can be

constructed from G/G0 and G0. Let G0 is a normal subgroup of G, and p : (G, g) −→ (H, h)

where H = G/G0, denote by π : g −→ g/g0 the natural projection and r : g/g −→ g⊥0 the

inverse of the restriction of π to g⊥0 , we have π = Tep. Denoted by ⟨, ⟩π = r∗⟨, ⟩g.

Corollary 2.4.2. In the previous notations, we have the formula:

τ(π) = τ(Idh)− π(Hg0)

where τ(Idh) is the tension field of the map Idh : (h, ⟨, ⟩π) −→ (h, ⟨, ⟩h)

Corollary 2.4.3. In the previous notations, we have the formula:

τ2(π) = τ2(Idh) +
n∑

i=1

(Bπ(ei)Bπ(ei)π(H
g0) +Kh(π(H

g0), π(ei))π(ei))−Bπ(Ug)π(H
g0).

where (ei)
n
i=1) is an orthonormal basis of (g, ⟨, ⟩) and τ2(Idh) is the bitension field of the map

Idh : (h, ⟨, ⟩π) −→ (h, ⟨, ⟩h).

Denote for all u ∈ g, ãdu the restriction of adu to g0, since g0 is an ideal of g then ãdu ∈
Der(g0). Then define ρ : h −→ Der(g0) and ω : h× h −→ g0 given by:

ρ(v) = ãdr(v) and ω(v1, v2) = [r(v1), r(v2)]g − r([v1, v2]h)

Proposition 2.4.6. In the previous notations, we have:

1. For all v1, v2 ∈ h we have the formula:

ρ([v1, v2]h) = [ρ(v1), ρ(v2)]− ãdω(v1,v2).

2. Let dρω(v1, v2, v3) =
∮
(ρ(v1)(ω(v2, v3))− ω([v1, v2]h, v3)), alors dρω = 0.

Proposition 2.4.7 ([3]). For all v ∈ h we have

⟨π(Hg0), v⟩π = trρ(v)

Proposition 2.4.8 ([3]). Let G be a connected Riemannian Lie group and G0 a semisimple

normal subgroup of G. Then G0 ↪→ G is minimal and p : G −→ G/G0 is harmonic when

G/G0 is endowed with the quotient metric g0. Moreover, for any left invariant Riemannian

metric h on G/G0, p : (G, g) −→ (G/G0, h) is harmonic (resp. biharmonic) if and only if

IdG/G0 : (G/G0, g0) −→ (G/G0, h) is harmonic (resp. biharmonic).
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2.5 When harmonicity and biharmonicity are equivalent

We give now, the study of situations where harmonicity and bi-harmonicity are equivalent in

the context of Riemannian Lie groups.

Theorem 2.5.1. Let φ : G −→ H be a homomorphism between two Riemannian Lie groups

such that the sectional curvature of (H, h) is non-positive and g is unimodular. Then φ is

harmonic if and only if it is biharmonic.

Proof. Let (ei)
n
i=1 be an orthonormal basis of (g, ⟨, ⟩g), by the formula (2.6) we have

⟨τ2(ξ), τ(ξ)⟩h = −
n∑

i=1

(⟨Bξ(ei)Bξ(ei)τ(ξ), τ(ξ)⟩h+⟨Kh(τ(ξ), ξ(ei))ξ(ei), τ(ξ)⟩h+⟨Bξ(Ug)τ(ξ), τ(ξ)⟩h

=
n∑

i=1

(⟨Bξ(ei)τ(ξ), Bξ(ei)τ(ξ)⟩h − ⟨Kh(ξ(ei), τ(ξ))ξ(ei), τ(ξ)⟩h

If φ is biharmonic then τ2(ξ) = 0, then we have:

n∑
i=1

(⟨Bξ(ei)τ(ξ), Bξ(ei)τ(ξ)⟩h =
n∑

i=1

⟨Kh(ξ(ei), τ(ξ))ξ(ei), τ(ξ)⟩h

Since the sectional curvature of (H, h) is negative then ⟨Kh(ξ(ei), τ(ξ))ξ(ei), τ(ξ)⟩h ≤ 0 for all

i = 1, n. Thus
∑n

i=1(⟨Bξ(ei)τ(ξ), Bξ(ei)τ(ξ)⟩h = 0, hence Bξ(ei)τ(ξ) = 0 for all 1 ≤ i ≤ n. We

have g is unimodular then U g = 0, then τ(ξ) = U ξ.We have

⟨τ(ξ), τ(ξ)⟩h = ⟨U ξ, τ(ξ)⟩h =
n∑

i=1

⟨Bξ(ei)ξ(ei), τ(ξ)⟩ = −
n∑

i=1

⟨ξ(ei), Bξ(ei)τ(ξ)⟩ = 0

Thus τ(ξ) = 0, hence φ is harmonic.

Corollary 2.5.1. Let φ : G −→ H be a homomorphism between two Riemannian Lie groups

such that the sectional curvature of (H, h) is non-positive and the sectional curvature of (G, g)

is non-negative. Then φ is harmonic if and only if it is biharmonic.

Proof. This is a consequence of Theorem 2.4.1 and the fact that a Lie group which admits a

left invariant Riemannian metric with non-negative Ricci curvature must be unimodular.

Other situations where harmonic and bi-harmonic are equivalent are presented by the fol-

lowing theorem proved in a more general sitting by Oniciuc [8] in Propositions 2.2, 2.4, 2.5,

4.3.

47



2.5. WHEN HARMONICITY AND BIHARMONICITY ARE EQUIVALENT

Theorem 2.5.2 ([3]). Let φ : G −→ H be a homomorphism between two Riemannian Lie

groups. In each for the following cases, φ is biharmonic if and only if it is harmonic:

1. The sectional curvature of (H, h) is non-positive and φ is a Riemannian immersion.

2. The sectional curvature of (H, h) is non-positive, φ is a Riemannian immersion and

dimH = dimG+ 1.

3. The sectional curvature of (H, h) is negative and rankξ > 1.

4. The sectional curvature of (H, h) is negative and φ is a Riemannian submersion.

Theorem 2.5.3 ([3]). Let φ : G −→ H be a homomorphism between two Riemannian Lie

groups. In the following cases the harmonicity of φ and its biharmonicity are equivalent:

1. H is 2-step nilpotent and g is unimodular.

2. φ is a Riemannian submersion and g is unimodular.

3. φ is a Riemannian submersion, kerξ is a subalgebra of g and g is unimodular.

4. φ is a Riemannian submersion, kerξ is unimodular, dimH = 2 and H is non abelian.

We give now a criteria which will be useful in order to show that an homomorphism is

harmonic if and only if it is biharmonic.

Let ξ : (g, ⟨ , ⟩1) −→ (h, ⟨ , ⟩2) be an homomorphism. We suppose that g is unimodular.

The following formulas was established in Lemma 2.1.1 and remark 6:

⟨τ(ξ), u⟩2 = tr(ξ∗ ◦ adu ◦ ξ),

⟨τ2(ξ), u⟩2 = tr(ξ∗ ◦ (adu + ad∗
u) ◦ adτ(ξ) ◦ ξ)− ⟨[u, τ(ξ)], τ(ξ)⟩2,

where ξ∗ : h −→ g and ad∗
u : h −→ h are given by

⟨ξ∗u, v⟩1 = ⟨u, ξv⟩2 and ⟨ad∗
ux, y⟩2 = ⟨aduy, x⟩2, x, y, u ∈ h, v ∈ g.

By combining these two formulas, we get

⟨τ2(ξ), u⟩2 = tr(ξ∗ ◦ (adu + ad∗
u) ◦ adτ(ξ) ◦ ξ)− tr(ξ∗ ◦ ad[u,τ(ξ)] ◦ ξ).

So if ξ is biharmonic then τ(ξ) is solution of the linear system

tr(ξ∗ ◦ (adu + ad∗
u) ◦ adX ◦ ξ)− tr(ξ∗ ◦ ad[u,X] ◦ ξ) = 0, u ∈ h. (2.8)
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If B = (f1, . . . , fm) is a basis of h this system is equivalent to

Mξ(B)X = 0,

where Mξ(B) = (mij)1≤i≤j≤m and

mij = tr(ξ∗ ◦ (adfi + ad∗
fi
) ◦ adfj ◦ ξ)− tr(ξ∗ ◦ ad[fi,fj ] ◦ ξ).

We call Mξ(B) the test matrix of ξ in the basis (f1, . . . , fn).

Proposition 2.5.1. If det(Mξ(B)) ̸= 0 then ξ is biharmonic if and only if it is harmonic.
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Chapter 3
Biharmonic and harmonic homomorphisms

between Riemannian three dimensional

unimodular Lie groups

Thus the study of biharmonic and harmonic homomorphisms between connected and simply-

connected Lie groups reduces to the study of their differential so, through this chapter, we

consider homomorphisms ξ : (g, ⟨ , ⟩1) −→ (g, ⟨ , ⟩2) where g is a Lie algebra and ⟨ , ⟩1 and

⟨ , ⟩2 are two Euclidean products. We call ξ harmonic (resp. biharmonic) if τ(ξ) = 0 (resp.

τ2(ξ) = 0).

The classification of biharmonic and harmonic homomorphisms will be done up to a conju-

gation. Two homomorphisms between Euclidean Lie algebras

ξ1 : (g, ⟨ , ⟩11) −→ (g, ⟨ , ⟩12) and ξ2 : (g, ⟨ , ⟩21) −→ (g, ⟨ , ⟩22)

are conjugate if there exists two isometric automorphisms ϕ1 : (g, ⟨ , ⟩11) −→ (g, ⟨ , ⟩21) and

ϕ2 : (g, ⟨ , ⟩12) −→ (g, ⟨ , ⟩22) such that ξ2 = ϕ2 ◦ ξ1 ◦ ϕ−1
1 .

In the following sections, the computation of τ(ξ) and τ2(ξ) are performed by the software

Maple and all the direct computations as well.
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3.1. HARMONIC AND BIHARMONIC HOMOMORPHISMS ON THE 3-DIMENSIONAL
HEISENBERG LIE GROUP

3.1 Harmonic and biharmonic homomorphisms on the

3-dimensional Heisenberg Lie group

The following result gives a complete classification of harmonic and biharmonic homomorphisms

of n.

Theorem 3.1.1. An homomorphism of n is biharmonic if and only if it is harmonic. Moreover,

it is harmonic if and only if it is conjugate to ξ : (n, ⟨ , ⟩1) −→ (n, ⟨ , ⟩2) where

ξ =


α1 α2 0

β1 β2 0

0 0 α1β2 − α2β1

 or


aβ3 −aα3 0

bβ3 −bα3 0

α3 β3 0

 , (α3, β3) ̸= (0, 0)

and Mat(⟨ , ⟩i,B0) = Diag(λi, λi, 1) and λi > 0, i = 1, 2.

Proof. The first part of the theorem is a consequence of Theorem 2.5.3. On the other hand,

according to Table 1.1, and homomorphism ξ : (n, ⟨ , ⟩1) −→ (n, ⟨ , ⟩2) has, up to a conjugation,

the form

ξ =


α1 α2 0

β1 β2 0

α3 β3 α1β2 − α2β1

 and ⟨ , ⟩i = Diag(λi, λi, 1), λi > 0, i = 1, 2.

Then

τ(ξ) =
α3β1 + β3β2

λ2λ1
X1 −

α3α1 + β3α2

λ2λ1
X2

and the second part of the theorem follows.

3.2 Harmonic and biharmonic homomorphisms on Ẽ0(2)

The situation on e0(2) is different and there exists biharmonic homomorphisms which are

not harmonic. The following two theorems give a complete classification of harmonic and

biharmonic homomorphisms on e0(2).

Theorem 3.2.1. An homomorphism of e0(2) is harmonic if and only if it it is conjugate to

ξ : (e0(2), ⟨ , ⟩1) −→ (e0(2), ⟨ , ⟩2) where Mat(⟨ , ⟩i, B0) =


1 0 0

0 µi 0

0 0 νi

 , 0 < µi ≤ 1, νi > 0 and

either
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1. ξ =


0 0 a

0 0 b

0 0 γ

 with γ2 ̸= 1 and (a ̸= 0, b ̸= 0, γ = 0, µ2 = 1) , ((a, b) ̸= (0, 0), ab = 0, γ = 0)

or (a = b = 0)

2. ξ =


α −β a

β α b

0 0 1

 and (a = b = 0, α = 0), (a = b = 0, β = 0), (a = b = 0, µ1 = 1) or (a =

b = 0, µ2 = 1),

3. ξ =


α β a

β −α b

0 0 −1

 and (a = b = 0, α = 0), (a = b = 0, β = 0), (a = b = 0, µ1 =

1) or (a = b = 0, µ2 = 1).

Proof. According to Table 1.1, and homomorphism ξ : (e0(2), ⟨ , ⟩1) −→ (e0(2), ⟨ , ⟩2) has, up
to a conjugation, the form Mat(⟨ , ⟩i,B0) = Diag(1, µi, νi), i = 1, 2, 0 < µi ≤ 1, νi > 0 and

ξ =


0 0 a

0 0 b

0 0 γ

 , γ2 ̸= 1, ξ =


α −β a

β α b

0 0 1

 or ξ =


α β a

β −α b

0 0 −1

 .

• ξ =


0 0 a

0 0 b

0 0 γ

 with γ2 ̸= 1. We have

τ(ξ) = −γ µ2b

ν1
X1 +

γ a

µ2ν1
X2 +

ba (µ2 − 1)

ν2ν1
X3

and τ(ξ) = 0 if and only if

(a ̸= 0, b ̸= 0, γ = 0, µ2 = 1) , ((a, b) ̸= (0, 0), ab = 0, γ = 0) or (a = b = 0).

• ξ =


α −β a

β α b

0 0 1

. We have

τ(ξ) = −µ2b

ν1
X1 +

a

µ2ν1
X2 +

(µ2 − 1)(αβν1(µ1 − 1) + abµ1)

µ1ν1ν2
X3
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and τ(ξ) = 0 if and only if

(a = b = 0, α = 0), (a = b = 0, β = 0), (a = b = 0, µ1 = 1) or (a = b = 0, µ2 = 1).

• ξ =


α β a

β −α b

0 0 −1

. We have

τ(ξ) =
µ2b

ν1
X1 −

a

µ2ν1
X2 +

(µ2 − 1)(αβν1(µ1 − 1) + abµ1)

µ1ν1ν2
X3

and τ(ξ) = 0 if and only if

(a = b = 0, α = 0), (a = b = 0, β = 0), (a = b = 0, µ1 = 1) or (a = b = 0, µ2 = 1).

Theorem 3.2.2. An homomorphism of e0(2) is biharmonic not harmonic if and only if it is

conjugate to ξ : (e0(2), ⟨ , ⟩1) −→ (e0(2), ⟨ , ⟩2) where Mat(⟨ , ⟩i,B0) =


1 0 0

0 µi 0

0 0 νi

 , 0 < µi ≤

1, νi > 0 and either:

1. ξ =


0 0 a

0 0 b

0 0 0

 and (a2 = b2, ab ̸= 0) ,

2. (µ1 ̸= 0, µ2 ̸= 1), ξ =


α −β a

β α b

0 0 1

 and (a = b = 0, α2 = β2, αβ ̸= 0) or

(
a = ϵbµ2

√
µ1, b ̸= 0, α2 = β2 =

√
µ1 (µ2

2ν2 + a2(µ2 − 1)2)

µ2 ν1 (µ2 − 1)2 (1− µ1)
, β = ϵα, ϵ = ±1.

)

3. (µ1 ̸= 0, µ2 ̸= 1), ξ =


α β a

β −α b

0 0 −1

 and (a = b = 0, α2 = β2, αβ ̸= 0) or

(
a = ϵbµ2

√
µ1, b ̸= 0, α2 = β2 =

√
µ1 (µ2

2ν2 + a2(µ2 − 1)2)

µ2 ν1 (µ2 − 1)2 (1− µ1)
, β = ϵα, ϵ = ±1

)
.
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Proof. As in the proof of Theorem 3.2.1, according to Table 1.1, and homomorphism ξ :

(e0(2), ⟨ , ⟩1) −→ (e0(2), ⟨ , ⟩2) has, up to a conjugation, the form Mat(⟨ , ⟩i,B0) =

Diag(1, µi, νi), i = 1, 2, 0 < µi ≤ 1, νi > 0 and

ξ =


0 0 a

0 0 b

0 0 γ

 , γ2 ̸= 1, ξ =


α −β a

β α b

0 0 1

 or ξ =


α β a

β −α b

0 0 −1

 .

• ξ =


0 0 a

0 0 b

0 0 γ

 with γ2 ̸= 1. We have


τ2(ξ) = −bγ ((γ

2ν2 + a2)µ2
2 − 2 a2µ2 + a2)

ν12ν2
X1 +

γ a (b2µ2(µ2 − 1)2 + γ2ν2)

ν12µ2
2ν2

X2

+
((γ2ν2 + a2 − b2)µ2

2 + (γ2ν2 − a2 + b2)µ2 + γ2ν2) b (µ2 − 1) a

ν12ν22µ2

X3..

If γ = 0 then

τ2(ξ) =
(a− b) (a+ b) (µ2 − 1)2 ba

ν12ν22
X3

and ξ is biharmonic not harmonic if and only if a2 = b2 and ab ̸= 0.

If γ ̸= 0 and b ̸= 0 and τ2(ξ) = 0 then

(
γ2ν2 + a2

)
µ2

2 − 2 a2µ2 + a2 = 0.

The discriminant of this equation on µ2 is ∆ = −4a2γ2ν2 ≤ 0 and this equation has no

solution. It is also clear that if γ ̸= 0 and a ̸= 0 then τ2(ξ) ̸= 0. In conclusion ξ is biharmonic

not harmonic if and only if

(
γ = 0, a2 = b2, ab ̸= 0

)
.
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• ξ =


α −β a

β α b

0 0 1

. We have



τ(ξ) = −µ2b

ν1
X1 +

a

µ2ν1
X2 +

(µ2 − 1)(αβν1(µ1 − 1) + abµ1)

µ1ν1ν2
X3,

τ2(ξ) = A1X1 + A2X2 + A3X3,

A1 = −
(
bµ1 (µ2 − 1)2 a2 + β α ν1 (µ2 − 1)2 (µ1 − 1) a+ bµ1µ2

2ν2
)

µ1ν12ν2
,

A2 =
((α ν1 (µ1 − 1) β + abµ1) bµ2

3 − 2 (α ν1 (µ1 − 1) β + abµ1) bµ2
2 + (α ν1 (µ1 − 1) β + abµ1) bµ2 + aµ1ν2)

ν12µ2
2ν2µ1

,

µ1
2ν1

2ν2
2µ2A3 = µ2β ν1

2 (µ1 − 1)2 (µ2 − 1)2 α3 + µ2ν1abµ1 (µ2 − 1)2 (µ1 − 1)α2

+µ2β ν1 (µ1 − 1) (−β2µ1ν1 + a2µ1 − b2µ1 + β2ν1) (µ2 − 1)2 α + abµ1 (−β2µ1µ2
2ν1 + µ1µ2

2ν2 + a2µ1µ2
2

−b2µ1µ2
2 + β2µ1µ2ν1 + β2µ2

2ν1 + µ1µ2ν2 − a2µ1µ2 + b2µ1µ2 − β2µ2ν1 + µ1ν2) (µ2 − 1)

and the test matrix is given by

Mξ(B0) =


µ2

ν1
0 −a (µ2−1)

ν1

0 1
ν1

b(µ2−1)
ν1

− µ2a
ν1

− b
ν1

(µ2−1)(((α2−β2)ν1+a2−b2)µ1+ν1(−α2+β2))
µ1ν1

 and det(Mξ(B)) =
µ2(µ2−1)(α2−β2)(µ1−1)

ν12µ1
.

Note first that if µ2 = 1 then τ2(ξ) = − b
ν12
X1 +

a
ν12
X2 and ξ is biharmonic if and only if it is

harmonic. If µ1 = 1 then

A1 = −
(
b (µ2 − 1)2 a2 + bµ2

2ν2
)

ν12ν2
and A2 =

(b2aµ2
3 − 2 b2aµ2

2 + b2aµ2 + aν2)

ν12µ2
2ν2

and one can see easily A1 = A2 = 0 if and only if a = b = 0 and hence ξ is biharmonic if and

only if ξ is biharmonic.

We suppose now that µ1 < 1 and µ2 < 1. So det(Mξ(B0)) = 0 if and only if α2 = β2.

According to Proposition 2.5.1, if α2 ̸= β2 then ξ is biharmonic if and only if it is harmonic.

We have also that if α = β = 0 then τ2(ξ) = 0 if and only if a = b = 0

Suppose that α2 = β2 and α ̸= 0. If a = b = 0 then τ2(ξ) = 0 and ξ is biharmonic

not harmonic. Suppose (a, b) ̸= 0. Then the rank of Mξ(B0) is equal to 2 and its kernel has

dimension one and

v = a (µ2 − 1)X1 − b (µ2 − 1)µ2X2 + µ2X3
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is a generator of the kernel of Mξ(B0). But if ξ is biharmonic then τ(ξ) is in the kernel of

Mξ(B0) and hence it is a multiple of v. Recall that

τ(ξ) = −µ2b

ν1
X1 +

a

µ2ν1
X2 +

(µ2 − 1)(ϵα2ν1(µ1 − 1) + abµ1)

µ1ν1ν2
X3 and ϵ = ±1.

But (v, τ(ξ)) are linearly dependent if and only if
(µ2 − 1) ν2µ1 (−b2µ2

3 + a2)

µ2

= 0,

−b (µ2 − 1)2 µ2ϵ (µ1 − 1) ν1α
2 − aµ1 (b

2µ2
3 − 2 b2µ2

2 + b2µ2 + ν2) = 0,

bµ1 (µ2 − 1)2 a2 + α2ϵ ν1 (µ2 − 1)2 (µ1 − 1) a+ bµ1µ2
2ν2 = 0.

Since (a, b) ̸= (0, 0), this is equivalent to
a2 = b2µ2

3,

α2 = − µ1a (b
2µ2(µ2 − 1)2 + ν2)

b (µ2 − 1)2 µ2ϵ (µ1 − 1) ν1
= −µ1b (µ2

2ν2 + a2(µ2 − 1)2)

ϵ ν1 (µ2 − 1)2 (µ1 − 1) a

and this is equivalent to
a2 = b2µ2

3,

α2 = −µ1b (µ2
2ν2 + a2(µ2 − 1)2)

ϵ ν1 (µ2 − 1)2 (µ1 − 1) a
.

So a = ϵbµ2
√
µ2 and we get the desired result.

The case of ξ =


α β a

β −α b

0 0 −1

 can be treated identically.

3.3 Harmonic and biharmonic homomorphisms on Sol

Theorem 3.3.1. An homomorphism of sol is harmonic if and only if it is conjugate to ξ :

(sol, ⟨ , ⟩1) −→ (sol, ⟨ , ⟩2) where:

1. ⟨ , ⟩i = Diag(1, 1, νi), i = 1, 2 and νi > 0 and either

[ξ = ξ1, (a = b = 0) or (γ = 0, a2 = b2)], [ξ = ξ2, (a = b = 0, α2 = β2)]

or [ξ = ξ3, (a = b = 0, α2 = β2)].
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2. ⟨ , ⟩1 =


1 0 0

0 1 0

0 0 ν1

, ⟨ , ⟩2 =


1 1 0

1 µ2 0

0 0 ν2

 and νi > 0, µ2 > 1 and either

[
ξ = ξ1, (a = b = 0) or

(
γ = 0, µ2 =

a2

b2

)]
,[

ξ = ξ2, (a = b = α = β = 0) or

(
a = b = 0, µ2 =

α2

β2

)]
or[

ξ = ξ3, (a = b = α = β = 0) or

(
a = b = 0, µ2 =

α2

β2

)]
.

3. ⟨ , ⟩1 =


1 1 0

1 µ1 0

0 0 ν1

, ⟨ , ⟩2 =


1 0 0

0 1 0

0 0 ν2

 and νi > 0, µ1 > 1,

[
ξ = ξ1, (a = b = 0) or (γ = 0, a2 = b2)

]
,[

ξ = ξ2, (a = b = α = β = 0) or

(
a = b = 0, µ1 =

β2

α2

)]
, or[

ξ = ξ3, (a = b = α = β = 0) or

(
a = b = 0, µ1 =

β2

α2

)]
.

4. ⟨ , ⟩1 =


1 1 0

1 µ1 0

0 0 ν1

, ⟨ , ⟩2 =


1 1 0

1 µ2 0

0 0 ν2

 and νi > 0, µi > 1 and either

[
ξ = ξ1, (a = b = 0) or

(
γ = 0, µ2 =

a2

b2

)]
,[

ξ = ξ2, (a = b = α = β = 0) or
(
a = b = 0, (α, β) ̸= (0, 0), α2µ1 = β2µ2

)]
or[

ξ = ξ3, (a = b = α = β = 0) or
(
a = b = 0, (α, β) ̸= (0, 0), α2µ1µ2 = β2

)]
.

The homomorphisms ξi, i = 1..3 are given by

ξ1 =


0 0 a

0 0 b

0 0 γ

 , ξ2 =


α 0 a

0 β b

0 0 1

 and ξ3 =


0 β a

α 0 b

0 0 −1

 .
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Proof. We use Table 1.1 to get all the conjugation classes of homomorphisms of sol and for

each one we compute τ(ξ).

• ⟨ , ⟩i = Diag(1, 1, νi), i = 1, 2 and νi > 0. We have


τ(ξ1) = −γ a

ν1
X1 +

γ b

ν1
X2 +

a2 − b2

ν2ν1
X3,

τ(ξ2) = − a

ν1
X1 +

b

ν1
X2 +

(α2 − β2) ν1 + a2 − b2

ν2ν1
X3,

τ(ξ3) =
a

ν1
X1 −

b

ν1
X2 +

(−α2 + β2) ν1 + a2 − b2

ν2ν1
X3.

• ⟨ , ⟩1 =


1 0 0

0 1 0

0 0 ν1

, ⟨ , ⟩2 =


1 1 0

1 µ2 0

0 0 ν2

 and νi > 0, µ2 > 1. We have



τ(ξ1) = −((a+ 2 b)µ2 + a) γ

(µ2 − 1) ν1
X1 +

γ (bµ2 + 2 a+ b)

(µ2 − 1) ν1
X2 +

−b2µ2 + a2

ν2ν1
X3,

τ(ξ2) = −(a+ 2 b)µ2 + a

(µ2 − 1) ν1
X1 +

bµ2 + 2 a+ b

(µ2 − 1) ν1
X2 +

(−β2µ2 + α2) ν1 − b2µ2 + a2

ν2ν1
X3,

τ(ξ3) =
(a+ 2 b)µ2 + a

(µ2 − 1) ν1
X1 −

µ2b+ 2 a+ b

(µ2 − 1) ν1
X2 +

(−α2µ2 + β2) ν1 − b2µ2 + a2

ν2ν1
X3.

• ⟨ , ⟩1 =


1 1 0

1 µ1 0

0 0 ν1

, ⟨ , ⟩2 =


1 0 0

0 1 0

0 0 ν2

 and νi > 0, µ1 > 1. We have



τ(ξ1) = −γ a
ν1
X1 +

γ b

ν1
X2 +

a2 − b2

ν2ν1
X3,

τ(ξ2) = − a

ν1
X1 +

b

ν1
X2 +

(α2ν1 + a2 − b2)µ1 − β2ν1 − a2 + b2

ν2 (µ1 − 1) ν1
X3,

τ(ξ3) =
a

ν1
X1 −

b

ν1
X2 +

(−α2ν1 + a2 − b2)µ1 + β2ν1 − a2 + b2

ν2 (µ1 − 1) ν1
X3.
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• ⟨ , ⟩1 =


1 1 0

1 µ1 0

0 0 ν1

, ⟨ , ⟩2 =


1 1 0

1 µ2 0

0 0 ν2

 and νi > 0, µi > 1. We have



τ(ξ1) = −((a+ 2 b)µ2 + a) γ

(µ2 − 1) ν1
X1 +

γ (bµ2 + 2 a+ b)

(µ2 − 1) ν1
X2 +

−b2µ2 + a2

ν2ν1
X3,

τ(ξ2) = −(a+ 2 b)µ2 + a

(µ2 − 1) ν1
X1 +

bµ2 + 2 a+ b

(µ2 − 1) ν1
X2 +

(α2ν1 − b2µ2 + a2)µ1 + (−β2ν1 + b2)µ2 − a2

ν2 (µ1 − 1) ν1
X3,

τ(ξ3) =
(a+ 2 b)µ2 + a

(µ2 − 1) ν1
X1 −

bµ2 + 2 a+ b

(µ2 − 1) ν1
X2 +

((−α2ν1 − b2)µ2 + a2)µ1 + b2µ2 + β2ν1 − a2

ν2 (µ1 − 1) ν1
X3.

One can check that τ(ξi) = 0 are equivalent to the conditions given in the theorem.

Theorem 3.3.2. An homomorphism of sol is biharmonic if and only if it is harmonic.

Proof. As above, we put

ξ1 =


0 0 a

0 0 b

0 0 γ

 , ξ2 =


α 0 a

0 β b

0 0 1

 and ξ3 =


0 β a

α 0 b

0 0 −1

 .

Let ξ : (sol, ⟨ , ⟩1) −→ (sol, ⟨ , ⟩2) an homomorphism. Table 1.1 gives all the possible

conjugation classes of ξ and we will show that for each case ξ is biharmonic if and only if ξ is

harmonic.

• ξ = ξ1 and ⟨ , ⟩i = Diag(1, 1, νi), i = 1, 2 and νi > 0. We have

τ2(ξ) = −2
(1/2 γ2ν2 + a2 − b2) aγ

ν12ν2
X1−2

(−1/2 γ2ν2 + a2 − b2) γ b

ν12ν2
X2+

γ2 (a2 − b2) ν2 + 2 a4 − 2 b4

ν22ν12
X3.

One can see easily that τ2(ξ) = 0 if and only if (a = b = 0) or (γ = 0, a2 = b2) which, according

to Theorem 3.3.1, is equivalent to ξ is harmonic.

• ξ = ξ2 and ⟨ , ⟩i = Diag(1, 1, νi), i = 1, 2 and νi > 0. We have
τ2(ξ) = −2

a ((α2 − β2) ν1 + a2 − b2 + 1/2 ν2)

ν12ν2
X1 − 2

((α2 − β2) ν1 + a2 − b2 − 1/2 ν2) b

ν12ν2
X2

+
2α4ν1

2 − 2 β4ν1
2 + 4 a2α2ν1 − 4 b2β2ν1 + 2 a4 − 2 b4 + a2ν2 − b2ν2

ν12ν22
X3.

We have also

Mξ(B0) =


ν1

−1 0 −2 a
ν1

0 ν1
−1 −2 b

ν1

− a
ν1

− b
ν1

2α2ν1+2β2ν1+2 a2+2 b2

ν1

 and det(Mξ(B0)) = 2
α2 + β2

ν12
.
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According to Proposition 2.5.1, if (α, β) ̸= (0, 0) then ξ is biharmonic if and only if it is

harmonic. If α = β = 0 then ξ = ξ1 with γ = 1 and we can use the arguments used in the

precedent case to conclude.

• ξ = ξ3 and ⟨ , ⟩i = Diag(1, 1, νi), i = 1, 2 and νi > 0. We have
τ2(ξ) =

a (−2α2ν1 + 2 β2ν1 + 2 a2 − 2 b2 + ν2)

ν12ν2
X1 +

b (−2α2ν1 + 2 β2ν1 + 2 a2 − 2 b2 − ν2)

ν12ν2
X2

+
−2α4ν1

2 + 2 β4ν1
2 + 4 a2β2ν1 − 4α2b2ν1 + 2 a4 − 2 b4 + a2ν2 − b2ν2

ν12ν22
X3

and

Mξ(B0) =


ν1

−1 0 2 a
ν1

0 ν1
−1 2 b

ν1

a
ν1

b
ν1

2α2ν1+2β2ν1+2 a2+2 b2

ν1

 and det(Mξ(B0)) = 2
α2 + β2

ν12

and the situation is similar to the precedent cases.

• ξ = ξ1 and ⟨ , ⟩1 =


1 0 0

0 1 0

0 0 ν1

, ⟨ , ⟩2 =


1 1 0

1 µ2 0

0 0 ν2

 and νi > 0, µ2 > 1.



τ(ξ) = −γ ((a+ 2 b)µ2 + a)

(µ2 − 1) ν1
X1 +

γ (bµ2 + 2 a+ b)

(µ2 − 1) ν1
X2 +

−b2µ2 + a2

ν2ν1
X3,

τ2(ξ) = −2
(−b2 (a− b)µ2

3 + (a3 − a2b+ (1/2 γ2ν2 + b2) a+ 2 bγ2ν2 − b3)µ2
2 + (3 aγ2ν2 + 2 bγ2ν2 − a3 + a2b)µ2 + 1/2 aγ2ν2) γ

ν12ν2 (µ2 − 1)2
X1

+2
γ (b3µ2

3 − b (−1/2 γ2ν2 + a2 + ab+ b2)µ2
2 + (ab2 + (3 γ2ν2 + a2) b+ 2 aγ2ν2 + a3)µ2 + 2 aγ2ν2 + 1/2 bγ2ν2 − a3)

ν12ν2 (µ2 − 1)2
X2

+2
(−b2µ2 + a2) (b2µ2

2 + (1/2 γ2ν2 + a2 − b2)µ2 + 3/2 γ2ν2 − a2)

ν12ν22 (µ2 − 1)
X3

Suppose that ξ is biharmonic not harmonic. Then, by virtue of Theorem 3.3.1, (a, b) ̸= 0

and (γ ̸= 0 or µ2 ̸= a2

b2
). If µ2 =

a2

b2
then a direct computation shows that

τ2(ξ) = −(a+ b)2 γ3a

(a− b)2 ν12
X1 +

b (a+ b)2 γ3

(a− b)2 ν12
X2

and since (a, b) ̸= (0, 0), γ ̸= 0 and µ2 > 1 this is impossible so we must have µ2 ̸= a2

b2
. In this

case, since the last coordinate of τ2(ξ) vanishes, we get(
1

2
γ2ν2 + a2

)
µ2+

3

2
γ2ν2−a2+

(
µ2

2 − µ2

)
b2 =

1

2
γ2ν2µ2+a

2(µ2−1)+
3

2
γ2ν2+

(
µ2

2 − µ2

)
b2 = 0
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But since µ2 > 1, this is equivalent to γ = a = b = 0 which is a contradiction. Finally, ξ is

biharmonic if and only if it is harmonic.

• ξ = ξ2 and ⟨ , ⟩1 =


1 0 0

0 1 0

0 0 ν1

, ⟨ , ⟩2 =


1 1 0

1 µ2 0

0 0 ν2

 and νi > 0, µ2 > 1. We have

Mξ(B0) =


ν1

−1 −ν1−1 −2 a
ν1

−ν1−1 µ2

ν1
−2 bµ2

ν1

−a+b
ν1

−bµ2+a
ν1

2 ν1β2µ2+2α2ν1+2 b2µ2+2 a2

ν1

 and det(Mξ(B0)) = 2
(µ2 − 1) (β2µ2 + α2)

ν12

If (α, β) ̸= (0, 0) then, according to Proposition 2.5.1, ξ is biharmonic if and only if it is

harmonic. If α = β = 0 then ξ = ξ1 with γ = 1 and we can use the arguments used in the

precedent case to conclude.

• ξ = ξ3 and ⟨ , ⟩1 =


1 0 0

0 1 0

0 0 ν1

, ⟨ , ⟩2 =


1 1 0

1 µ2 0

0 0 ν2

 and νi > 0, µ2 > 1. We have

Mξ(B0) =


ν1

−1 −ν1−1 2 a
ν1

−ν1−1 µ2

ν1
2 bµ2

ν1

a−b
ν1

bµ2−a
ν1

2α2µ2ν1+2 b2µ2+2β2ν1+2 a2

ν1

 and det(Mξ(B0)) = 2
(µ2 − 1) (α2µ2 + β2)

ν12

If (α, β) ̸= (0, 0) then, according to Proposition 2.5.1, ξ is biharmonic if and only if it is

harmonic. If α = β = 0 then ξ = ξ1 with γ = 1 and we can use the arguments used in the

precedent case to conclude.

• ξ = ξ1 and ⟨ , ⟩1 =


1 1 0

1 µ1 0

0 0 ν1

, ⟨ , ⟩2 =


1 0 0

0 1 0

0 0 ν2

 and νi > 0, µ1 > 1. We have

τ2(ξ) = −2
γ (1/2 γ2ν2 + a2 − b2) a

ν12ν2
X1−2

b (−1/2 γ2ν2 + a2 − b2) γ

ν12ν2
X2+

γ2 (a2 − b2) ν2 + 2 a4 − 2 b4

ν22ν12
X3

One can see easily that τ2(ξ) = 0 if and only if (a = b = 0) or (γ = 0, a2 = b2) which, according

to Theorem 3.3.1, is equivalent to ξ is harmonic.
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• ξ = ξ2 and ⟨ , ⟩1 =


1 1 0

1 µ1 0

0 0 ν1

, ⟨ , ⟩2 =


1 0 0

0 1 0

0 0 ν2

 and νi > 0, µ1 > 1. We have

Mξ(B0) =


ν1

−1 0 −2 a
ν1

0 ν1
−1 −2 b

ν1

− a
ν1

− b
ν1

(2α2ν1+2 a2+2 b2)µ1+2β2ν1−2 a2−2 b2

(µ1−1)ν1

 and det(Mξ(B0)) = 2
α2µ1 + β2

ν12 (µ1 − 1)
.

If (α, β) ̸= (0, 0) then, according to Proposition 2.5.1, ξ is biharmonic if and only if it is

harmonic. If α = β = 0 then ξ = ξ1 with γ = 1 and we can use the arguments used in the

precedent case to conclude.

• ξ = ξ3 and ⟨ , ⟩1 =


1 1 0

1 µ1 0

0 0 ν1

, ⟨ , ⟩2 =


1 0 0

0 1 0

0 0 ν2

 and νi > 0, µ1 > 1. We have

Mξ(B0) =


ν1

−1 0 2 a
ν1

0 ν1
−1 2 b

ν1

a
ν1

b
ν1

(2α2ν1+2 a2+2 b2)µ1+2β2ν1−2 a2−2 b2

(µ1−1)ν1

 and det(Mξ(B0)) = 2
α2µ1 + β2

ν12 (µ1 − 1)
.

The situation is similar to the precedent case.

• ξ = ξ1 and ⟨ , ⟩1 =


1 1 0

1 µ1 0

0 0 ν1

, ⟨ , ⟩2 =


1 1 0

1 µ2 0

0 0 ν2

 and νi > 0, µi > 1. We have



τ2(ξ) = −2
γ (−b2 (a− b)µ2

3 + (a3 − a2b+ (1/2 γ2ν2 + b2) a+ 2 bγ2ν2 − b3)µ2
2 + (3 aγ2ν2 + 2 bγ2ν2 − a3 + a2b)µ2 + 1/2 aγ2ν2)

ν12ν2 (µ2 − 1)2
X1

+2
γ (b3µ2

3 − b (−1/2 γ2ν2 + a2 + ab+ b2)µ2
2 + (ab2 + (3 γ2ν2 + a2) b+ 2 aγ2ν2 + a3)µ2 + 2 aγ2ν2 + 1/2 bγ2ν2 − a3)

ν12ν2 (µ2 − 1)2
X2+

2
(−b2µ2 + a2) (b2µ2

2 + (1/2 γ2ν2 + a2 − b2)µ2 + 3/2 γ2ν2 − a2)

ν12ν22 (µ2 − 1)
X3

One can see that τ2(ξ) is the same as in the case ξ = ξ1 and ⟨ , ⟩1 =


1 0 0

0 1 0

0 0 ν1

, ⟨ , ⟩2 =


1 1 0

1 µ2 0

0 0 ν2

 and we can use the same arguments to conclude.
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• ξ = ξ2 and ⟨ , ⟩1 =


1 1 0

1 µ1 0

0 0 ν1

, ⟨ , ⟩2 =


1 1 0

1 µ2 0

0 0 ν2

 and νi > 0, µi > 1. We have

Mξ(B0)


ν1

−1 −ν1−1 −2 a
ν1

−ν1−1 µ2

ν1
−2 µ2b

ν1

−a+b
ν1

−µ2b+a
ν1

(2α2ν1+2 b2µ2+2 a2)µ1+(2β2ν1−2 b2)µ2−2 a2

ν1(µ1−1)

 and

det(Mξ(B0)) = 2
(µ2 − 1) (α2µ1 + β2µ2)

ν12 (µ1 − 1)
.

If (α, β) ̸= (0, 0) then, according to Proposition 2.5.1, ξ is biharmonic if and only if it is

harmonic. If α = β = 0 then ξ = ξ1 with γ = 1 and we can use the arguments used in the

precedent case to conclude.

• ξ = ξ3 and ⟨ , ⟩1 =


1 1 0

1 µ1 0

0 0 ν1

, ⟨ , ⟩2 =


1 1 0

1 µ2 0

0 0 ν2

 and νi > 0, µi > 1. We have

Mξ(B0) =


ν1

−1 −ν1−1 2 a
ν1

−ν1−1 µ2

ν1
2 µ2b

ν1

a−b
ν1

µ2b−a
ν1

((2α2ν1+2 b2)µ2+2 a2)µ1−2 b2µ2+2β2ν1−2 a2

ν1(µ1−1)

 and

det(Mξ(B0)) = 2
(µ2 − 1) (α2µ1µ2 + β2)

ν12 (µ1 − 1)
.

The situation is similar to the precedent case.

3.4 Harmonic and biharmonic homomorphisms of su(2)

The following proposition is a consequence of [3, Proposition 2.5].

Proposition 3.4.1. Let ξ : (su(2), ⟨ , ⟩1) −→ (su(2), ⟨ , ⟩2) be an automorphism. If ⟨ , ⟩1 or

⟨ , ⟩2 is bi-invariant then ξ is harmonic.

Any homomorphism of su(2) is an automorphism and it is a product ξ3(a) ◦ ξ2(b) ◦ ξ1(c)
where

ξ1(a) =


1 0 0

0 cos(a) sin(a)

0 − sin(a) cos(a)

 , ξ2(a) =


cos(a) 0 sin(a)

0 1 0

− sin(a) 0 cos(a)

 , ξ3(a) =


cos(a) sin(a) 0

− sin(a) cos(a) 0

0 0 1

 .
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If ξi : (su(2), ⟨ , ⟩1) −→ (su(2), ⟨ , ⟩2) with ⟨ , ⟩j = Diag(λj, µj, νj) then

τ(ξ1(a)) = −sin (a) cos (a) (µ2 − ν2) (µ1 − ν1)

λ2µ1ν1
X1,

τ2(ξ1(a)) = −2
(µ2 − ν2)

2 (−ν1 + µ1)
2 cos (a)

(
(cos (a))2 − 1/2

)
sin (a)

µ1
2ν12λ2

2 X1,

τ(ξ2(a)) =
sin (a) cos (a) (λ2 − ν2) (λ1 − ν1)

µ2λ1ν1
X2,

τ2(ξ2(a)) =

(
2 (cos (a))2 − 1

)
cos (a) (λ2 − ν2)

2 (−ν1 + λ1)
2 sin (a)

λ1
2ν12µ2

2
X2,

τ(ξ3(a)) = −cos (a) sin (a) (λ2 − µ2) (λ1 − µ1)

λ1µ1ν2
X3,

τ2(ξ3(a)) = −2
cos (a) sin (a)

(
(cos (a))2 − 1/2

)
(µ2 − λ2)

2 (µ1 − λ1)
2

λ1
2µ1

2ν22
X3.

So we get:

Proposition 3.4.2. 1. If µ2 = ν2 or µ1 = ν1 then ξ1(a) is harmonic.

2. If µ2 ̸= ν2 and µ1 ̸= ν1 then ξ1(a) is harmonic if and only if sin(2a) = 0 and ξ1(a) is

biharmonic not harmonic if and only if cos(a)2 = 1
2
.

3. If λ2 = ν2 or λ1 = ν1 then ξ2(a) is harmonic.

4. If λ2 ̸= ν2 and λ1 ̸= ν1 then ξ2(a) is harmonic if and only if sin(2a) = 0 and ξ2(a) is

biharmonic not harmonic if and only if cos(a)2 = 1
2
.

5. If λ2 = µ2 or λ1 = µ1 then ξ3(a) is harmonic.

6. If λ2 ̸= µ2 and λ1 ̸= µ1 then ξ3(a) is harmonic if and only if sin(2a) and ξ3(a) is

biharmonic not harmonic if and only if cos(a)2 = 1
2
.

Theorem 3.4.1. We consider the automorphism

ξ = ξ3(a)◦ξ2(b)◦ξ1(c) : (su(2), diag(λ1, µ1, ν1)) −→ (su(2), diag(λ2, µ2, ν2)) , 0 ≤ νi < µi ≤ λi, i = 1, 2.

1. If (0 < ν1 < µ1 < λ1, 0 < ν2 < µ2 < λ2) or (0 < ν1 < µ1 < λ1, 0 < ν2 < µ2 < λ2) then ξ is

harmonic if and only if one of the following condition holds:

(i) cos(b) = 0, sin(b) = 1 and sin(2(a− c)) = 0,

(ii) cos(b) = 0, sin(b) = −1 and sin(2(a+ c)) = 0,
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(iii) sin(b) = 0 and sin(2c) = sin(2a) = 0.

2. If (0 < ν1 < µ1 < λ1, 0 < ν2 = µ2 < λ2) then ξ is harmonic if and only if one of the fol-

lowing condition holds:

(i) cos(b) = 0, sin(b) = 1 and sin(2(a− c)) = 0,

(ii) cos(b) = 0, sin(b) = −1 and sin(2(a+ c)) = 0,

(iii) sin(b) = 0 and sin(a) = 0.

(iv) sin(b) = 0, sin(2c) = 0 and cos(a) = 0.

3. If (0 < ν1 < µ1 = λ1, 0 < ν2 < µ2 < λ2) then ξ is harmonic if and only if one of the fol-

lowing condition holds:

(i) cos(b) = 0, sin(b) = 1 and sin(2(a− c)) = 0,

(ii) cos(b) = 0, sin(b) = −1 and sin(2(a+ c)) = 0,

(iii) sin(b) = 0 and sin(a) = sin(2c) = 0.

(iv) sin(b) = 0 and cos(a) = sin(2c) = 0.

4. If (0 < ν1 < µ1 < λ1, 0 < ν2 < µ2 = λ2) then ξ is harmonic if and only if cos(b) = 0 or

(sin(b) = sin(2c) = 0).

5. If (0 < ν1 = µ1 < λ1, 0 < ν2 < µ2 < λ2) then ξ is harmonic if and only if cos(b) = 0 or

(sin(b) = sin(2a) = 0).

6. If (0 < ν1 = µ1 < λ1, 0 < ν2 = µ2 < λ2) then ξ is harmonic if and only if (cos(b) = 0),

(cos(a)) = 0 or (sin(b) = sin(a) = 0).

7. If (0 < ν1 = µ1 < λ1, 0 < ν2 < µ2 = λ2) then ξ is harmonic if and only if sin(2b) = 0.

8. If (0 < ν1 < µ1 = λ1, 0 < ν2 < µ2 = λ2) then ξ is harmonic if and only if cos(b) cos(c) = 0

or (sin(b) = sin(c) = 0).

9. If (0 < ν1 < µ1 = λ1, 0 < ν2 = µ2 < λ2) then ξ is harmonic if and only if one of the fol-

lowing situations holds

(i) cos(b) = 0, sin(b) = 1 and sin(2(a− c)) = 0,

(ii) cos(b) = 0, sin(b) = −1 and sin(2(a+ c)) = 0,
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(iii) cos(c) = 0 and sin(2a) = 0,

(iv) sin(b) = sin(c) = 0,

(v) cos(a) = (−1)k sin(c)√
sin2(c)+sin2(b) cos2(c)

and sin(a) = (−1)k+1 sin(b) cos(c)√
sin2(c)+sin2(b) cos2(c)

.

Proof. We have

τ(ξ) = A1X1 +A2X2 +A3X3,

λ2λ1µ1ν1A1 = cos (b)
(
sin (a) sin (b)λ1 (µ1 − ν1) (cos (c))

2 − sin (c)λ1 cos (a) (µ1 − ν1) cos (c) + sin (a) sin (b) ν1 (λ1 − µ1)
)
(µ2 − ν2)

= cos(b) (µ2 − ν2)R,

µ2λ1µ1ν1A2 = cos (b)
(
sin (b)

(
λ1 (µ1 − ν1) (cos (c))

2 + ν1 (λ1 − µ1)
)
cos (a) + cos (c) sin (a) sin (c)λ1 (µ1 − ν1)

)
(λ2 − ν2)

= (λ2 − ν2) cos(b)S,

z := −ν2λ1µ1ν1A3 = (λ2 − µ2)
(
2 cos (c) sin (b) sin (c)λ1 (µ1 − ν1) (cos (a))

2

+
(
λ1

(
(cos (b))2 − 2

)
(µ1 − ν1) (cos (c))

2 + ν1 (λ1 − µ1) (cos (b))
2 + λ1 (µ1 − ν1)

)
sin (a) cos (a)− cos (c) sin (b) sin (c)λ1 (µ1 − ν1)

)
.

On the other hand, the following relations are straightforward to establish:R cos(a)− S sin(a) = −λ1 (µ1 − ν1) sin (c) cos (c) ,

R sin(a) + S cos(a) = sin (b)
(
λ1 (µ1 − ν1) (cos (c))

2 + ν1 (λ1 − µ1)
) (3.1)

and if cos(b) = 0 then

z =

1
2
sin(2(c− a)) (λ2 − µ2)λ1 (µ1 − ν1) if sin(b) = 1,

1
2
sin(2(c+ a)) (λ2 − µ2)λ1 (µ1 − ν1) if sin(b) = −1.

(3.2)

Suppose that (0 < ν1 < µ1 < λ1, 0 < ν2 < µ2 < λ2). Then ξ is harmonic if and only if

R cos(b) = S cos(b) = z = 0.

We distinguish two cases:

• cos(b) = 0. Then ξ is is harmonic if and only if z = 0 and, by virtue of (3.2), we get the

desired result.

• cos(b) ̸= 0 then from (3.1) sin(b) = 0 and sin(c) cos(c) = 0 and one can check easily that

ξ is harmonic if and only if cos(a) sin(a) = 0.

Except the last case, all the other cases can be deduced in the same way. Let us complete the
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proof by treating the last case. We suppose that (0 < ν1 < µ1 = λ1, 0 < ν2 = µ2 < λ2). Then
τ(ξ) =

cos (b) cos (c) (λ1 − ν1) (λ2 − µ2)R1

µ2λ1ν1
X2 −

2 (λ1 − ν1) (λ2 − µ2)S1

µ2λ1ν1
X3,

R1 = sin (a) sin (c) + cos (a) sin (b) cos (c) ,

S1 = sin (b) (cos (a))2 sin (c) cos (c) +
1

2
sin (a)

(
1 +

(
(cos (b))2 − 2

)
(cos (c))2

)
cos (a)− 1

2
sin (b) sin (c) cos (c) .

If cos(b) = 0 then

S1 =

1
4
sin(2(c− a)) if sin(b) = 1,

−1
4
sin(2(c+ a)) if sin(b) = −1

and we get (i) and (ii).

If cos(c) = 0 then S1 =
1
4
sin(2a) and we get (iii).

If sin(b) = sin(c) = 0 the S1 = R1 = 0 and hence ξ is harmonic.

Suppose now that cos(b) ̸= 0, cos(c) ̸= 0 and (sin(b), sin(c)) ̸= (0, 0). Then ξ is harmonic if

and only if R1 = S1 = 0. We have

R1 = sin(a)
sin(c)√

sin2(c) + sin2(b) cos2(c)
+ cos(a)

sin(b) cos(c)√
sin2(c) + sin2(b) cos2(c)

= sin(a+ α)

where

cos(α) =
sin(c)√

sin2(c) + sin2(b) cos2(c)
and sin(α) =

sin(b) cos(c)√
sin2(c) + sin2(b) cos2(c)

.

So R1 = 0 if and only if a+ α = kπ where k ∈ Z. Thus

cos(a) = (−1)k cos(α) = (−1)k
sin(c)√

sin2(c) + sin2(b) cos2(c)
and

sin(a) = −(−1)k sin(α) = (−1)k+1 sin(b) cos(c)√
sin2(c) + sin2(b) cos2(c)

.

If we replace cos(a) and sin(a) in S1, we get S1 = 0 which completes the proof.

The situation for biharmonic homomorphisms is more complicated. We have the following

non trivial biharmonic homomorphism which is not harmonic.

Example 24. The homomorphism ξ = ξ3(a) ◦ ξ2(b) ◦ ξ1(c) : (su(2), diag(λ1, µ1, ν1)) −→
(su(2), diag(λ2, µ2, ν2)) is biharmonic not harmonic if

µ1 = ν1, µ2 = ν2 and cos(a) = cos(b) =

(
1

2

) 1
4

.
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3.5 Harmonic and biharmonic homomorphisms of sl(2, R)

Any homomorphism of sl(2,R) is an automorphism and it is a product ξ3(a)◦ξ2(b)◦ξ1(c) where

ξ1(a) =


1 0 0

0 cosh(a) sinh(a)

0 sinh(a) cosh(a)

 , ξ2(a) =


cosh(a) 0 sinh(a)

0 1 0

sinh(a) 0 cosh(a)

 , ξ3(a) =


cos(a) sin(a) 0

− sin(a) cos(a) 0

0 0 1

 .

If ξi : (su(2), ⟨ , ⟩1) −→ (su(2), ⟨ , ⟩2) with ⟨ , ⟩j = Diag(λj, µj, νj) then

τ(ξ1(a)) = −cosh (a) sinh (a) (µ2 + ν2) (ν1 + µ1)

λ2µ1ν1
X1,

τ2(ξ1(a)) = −2
(µ2 + ν2)

2 ((cosh (a))2 − 1/2
)
(ν1 + µ1)

2 cosh (a) sinh (a)

µ1
2ν12λ2

2 X1

τ(ξ2(a)) =
cosh (a) sinh (a) (λ2 + ν2) (ν1 + λ1)

µ2λ1ν1
X2,

τ2(ξ2(a)) =

(
2 (cosh (a))2 − 1

)
cosh (a) (λ2 + ν2)

2 (ν1 + λ1)
2 sinh (a)

λ1
2ν12µ2

2
X2,

τ(ξ3(a)) = −sin (a) cos (a) (λ2 − µ2) (−µ1 + λ1)

ν2λ1µ1

X3,

τ2(ξ3(a)) = −2
sin (a) cos (a) (−λ2 + µ2)

2 (µ1 − λ1)
2 ((cos (a))2 − 1/2

)
λ1

2µ1
2ν22

X3.

So we get:

Proposition 3.5.1. 1. ξ1(a) is biharmonic if and only if it is harmonic if only if a = 0,

i.e., ξ1 = Id.

2. ξ2(a) is biharmonic if and only if it is harmonic if only if a = 0, i.e., ξ2 = Id.

3. If λ2 = µ2 or λ1 = µ1 then ξ3(a) is harmonic.

4. If λ2 ̸= µ2 and λ1 ̸= µ1 then ξ3(a) is harmonic if and only if (sin(2a) = 0) and ξ3(a) is

biharmonic not harmonic if and only if cos(a)2 = 1
2
.

Theorem 3.5.1. The automorphism

ξ = ξ3(a)◦ξ2(b)◦ξ1(c) : (sl(2,R), diag(λ1, µ1, ν1) −→ (sl(2,R), diag(λ2, µ2, ν2), 0 < λi ≤ µi, νi > 0

is harmonic if and only if ξ2(b) = ξ1(c) = Idsl(2,R) and ξ3(a) is harmonic.
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Proof. We have

τ(ξ) =
(µ2 + ν2)R

λ2λ1µ1ν1
X1 +

(λ2 + ν2)S

µ2λ1µ1ν1
X2 +

(λ2 − ν2)Q

ν2λ1µ1ν1
X3,

R = cosh (b)
(
sinh (b)λ1 sin (a) (µ1 + ν1) (cosh (c))

2 − sinh (c)λ1 cos (a) (µ1 + ν1) cosh (c)− sinh (b) ν1 sin (a) (λ1 − µ1)
)
,

S = cosh (b)
(
sinh (b)λ1 cos (a) (µ1 + ν1) (cosh (c))

2 + sinh (c)λ1 sin (a) (µ1 + ν1) cosh (c)− sinh (b) ν1 cos (a) (λ1 − µ1)
)
,

Q = −2 cosh (c) sinh (b) sinh (c)λ1 (µ1 + ν1) (cos (a))
2 + cosh (c) sinh (b) sinh (c)λ1 (µ1 + ν1)

+ sin (a)
(
λ1
(
(cosh (b))2 − 2

)
(µ1 + ν1) (cosh (c))

2 − ν1 (λ1 − µ1) (cosh (b))
2 + λ1 (µ1 + ν1)

)
cos (a) .

On the other hand, one can show easilycos(a)R− sin(a)S = − cosh (b) sinh (c) cosh (c)λ1 (µ1 + ν1) ,

sin(a)R + cos(a)S =
(
λ1 (µ1 + ν1) (cosh (c))

2 + ν1 (µ1 − λ1)
)
cosh (b) sinh (b) .

So ξ is harmonic if and only if

sinh(b) = sinh(c) = Q = 0

and we get the desired result.
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