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Abstract

The theory of biharmonic maps is old and rich and has gained a growing interest in the
last decade. The theory of harmonic maps into Lie groups, symmetric spaces or homogeneous
spaces has been extensively studied in relation to integrable systems by many mathematicians.
In particular, harmonic and biharmonic homomorphisms between Riemannian Lie groups ( a
Riemannian Lie group is Lie group endowed with left invariant Riemannian metric). In this
thesis we discuss the study of biharmonic and harmonic homomorphisms between Riemannian
Lie groups.

This dissertation concerns particularly harmonic and biharmonic homomorphisms between
Riemannian Lie groups which is one of the topics studied on a Lie groups endowed with invariant
structure. Various background material such as Lie groups, Invariant metrics, connections,
curvatures, homogeneous spaces, harmonic homomorphism, biharmonic homomorphism, and
representation theory are reviewed.

As a result, we classify biharmonic and harmonic homomorphisms f : (G, g1) — (G, ¢2)
where G is a connected and simply connected three-dimensional unimodular Lie group and ¢,

and g, are left invariant Riemannian metrics.
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Introduction

Generally the term of “Lie group” belongs to E. Cartan (1930). It is defined as a manifold
G endowed with a group structure, such that the multiplication map and the inversion map are
smooth (i.e.differentiable). The simple examples of Lie groups are the groups of isometries of
R"™, C". Hence, we obtain the orthogonal group O(n) and the unitary group U(n). An algebra
g can be associated with each Lie group G in a natural way; this is called the Lie algebra of G.

The most important applications of Lie groups involve actions by Lie groups on other
manifolds. A homogeneous space is a manifold M on which a Lie group acts transitively. As a
consequense M is diffeomorphic to the coset space G/H where H is a subgroup of G. In fact,
if we fix a point m € M, then H is the isotropy subgroup of m. In many mathematical fields
(geometry , harmonic analysis ...) a special interest is given to tensors, operators ... invariant
on M. In the classical case of M = R these are simply the tensors, operators ... has constant
coefficients.

The theory of biharmonic maps is old and rich and has gained a growing interest in the
last decade (see [2, 11] and others). The theory of harmonic maps into Lie groups, symmetric
spaces or homogeneous spaces has been extensively studied in relation to integrable systems by
many mathematicians (see for examples [5, 12, 13]). In particular, harmonic maps of Riemann
surfaces into compact Lie groups equipped with a bi-invariant Riemannian metric are called
principal chiral models and intensively studied as toy models of gauge theory in mathematical
physics [14]. In the papers [9, 6], harmonic inner automorphisms of a compact semi-simple
Lie group endowed with a left invariant Riemannian metric where studied. In [3], there is a

detailed study of biharmonic and harmonic homomorphisms between Riemannian Lie groups.?

LA biharmonic homomorphism between Riemannian Lie groups is a homomorphism of Lie groups ¢ : G — H

which is also biharmonic where G and H are endowed with left invariant Riemannian metrics.



Chapter 1 contains a brief review of Riemannian manifolds, and a definition of group actions
and describing examples. It contains also an introduction of proper actions, which give a nice
properties to the quotients. The quotient manifold theorem gives conditions under which the
quotient of smooth manifold is again smooth manifold. And then discusses a way to make a Lie
group into a Riemannian manifold. The important metrics here are the bi-invariant metrics,
with respect to such metrics we give formulas for the connection and the different types of
curvatures. This chapter is concluded by giving the classification of left invariant metrics on
simply connected three dimensional unimodular Lie groups.

The second chapter of this thesis gives a study of the harmonicity and bi-harmonicity
of Riemannian Lie groups homomorphisms. The reference of This chapter is the article of
M.boucetta and S. Ouakkas [3] , we start with a reminder of the elementary notions on Lie
groups and left invariant metrics on a Lie group (See [10] for more details). By using this
language we show that the harmonicity problem of a hoomorphism of Riemannian Lie groups
is an algebraic problem; therefore, the study of the structure of the Lie algebras will be under
question. The conditions of harmonicity of a homomorphism are expressed with respect to the
structure of the Lie algebras in play. We consider the same problem by restricting the class of
homomorphism to be studied, we consider successively the cases where the homomorphism is
an automorphism, a Riemannian immersion, and a submersion. Finally, we study the situations
where the harmonicity and the bi-harmonicity are equivalent.

Chapter 3 contains the obtained results in our article [1]. We classify, up to conjugation by
automorphisms of Lie groups, harmonic and biharmonic homomorphisms f : (G, g1) — (G, ¢2)
where GG is a non-abelian connected and simply-connected three dimensional unimodular Lie
group, f is an homomorphism of Lie groups and ¢g; and go are two left invariant Riemannian
metrics. There are five non-abelian connected and simply-connected three-dimensional uni-
modular Lie groups; the nilpotent Lie group Nil, the special unitary group SU(2), the universal
covering group P/’\Si(Q, R) of the special linear group, the solvable Lie group Sol, and the univer-
sal covering group I:]vo(2) of the connected component of the Euclidean group. Our main results

are as follows:

1. For Nil and Sol we show that a homomorphism is biharmonic if and only if it is harmonic
and we classify completely all the harmonic homomorphisms (see Theorems 3.1.1, 3.3.1
and 3.3.2).

2. For ES(2) we classify completely all the harmonic homomorphisms (see Theorem 3.2.1).

4



For this group there are biharmonic homomorphisms which are not harmonic and we give
a complete classification of these homomorphisms (see Theorem 3.2.2). To our knowl-
edge, these are the first examples of biharmonic not harmonic homomorphisms between

Riemannian Lie groups.

. For SU(2) and PSL(2,R), we give a complete classification of harmonic homomorphisms
(see Theorems 3.4.1 and 3.5.1). We show that these groups have biharmonic homomor-
phisms which are not harmonic and we give the first examples of these homomorphisms.

For SU(2) we recover the results obtained in [9, 6] and we complete them.



Chapter

Preliminaries

Before we introduce the Lie groups and give examples about them, we first give a brief review of
Riemannian manifolds. We mention the quotient manifold theorem which gives conditions un-
der which the quotient of smooth manifold is again smooth manifold. Taking into consideration
such metrics we give formulas for the connection and the different types of curvatures. We sum
up by giving the classification of left invariant metrics on simply connected three dimensional

unimodular Lie groups.

1.1 Review of the Riemannian manifolds

Definition 1.1.1. A Riemannian metric on a smooth manifold M is a correspondence which
associates to each point p € T,M a scalar product g, = (,), (that is a symmetric bilinear,
positive definite form) on the tangent space T,M, for any two smooth vector fields X,Y in a
neighborhood of p, the map p — (X,,,Y,), is smooth. A smooth manifold with a Riemannian

metric is called a Riemannian manifold, and is denoted (M, g = (,)).

Let (M, (,)) be a Riemannian manifold and (z, ..., z,,) local coordinates system on an open
set U and let 0,, = 8%1_ (for i = 1,n) be the coordinate vector fields at p.
Then

9p(Xp, Yp) = Z 9ij (P)X;W
i=1

where the local functions g;; : U — R are given by g;;(p) = (5.-, 5
i j

6



1.1. REVIEW OF THE RIEMANNIAN MANIFOLDS

The local expression of g is given by
9="_)="_ gijdu:dz;
i,J

Where dz;dz; = %(dml ® dxj + dr; ® dz;)

In the language of tensorsl, g is a symmetric, non-degenerate (0, 2) tensor field on M.
Proposition 1.1.1. Any smooth manifold carries a Riemann metric.

Proof. Choose a locally finite open covering U = {U,}aca of M by chart domains and a
subordinate partition of the unity (f, : M — [0,1])aca. For any a € A define on U, a
Riemannian metric (,), by putting

n

()= Z(dZEZ)Q

i=1

Now define (,) on M by putting, for any p € M and any u,v € T,M,

(u,v) = Z folt, v)o

a€A

One can see easily that (,) is a Riemannian metric on M O

Definition 1.1.2. Let (M,g), (N,g') be Riemannian manifolds. An isometry is a diffeomor-
phism f: (M,g) — (N, ¢') that preserves the metrics, i.e.

gp(u,v) = g}(p) (T, f(u), T, f (v),Vu,v € T,M
where T,,f = d,f is the tangent function.

Example 1. (1) Let M =R", Let {ey, ..., e,} the canonical basis of R™ and E% identified with
e; = (0,...,1...,0) The metric is given by g(e;,e;) = 0;;. In this case R" is called the Euclidean
space of dimension n.

(2) Let f: M — N be an immersion (that is smooth, with d,f one-to-one for all p € M) let

g' be a Riemannian metric on N, then [ induces a Riemannian metric g on M by defining

9p(,v) = gy (T f (w), Tp f (v)), Yu, v € T,M

Let X(M) be the set of all smooth vector field on M and F(M) be the set of all smooth
real-valued functions on a manifold M. Let X,Y € X' (M) Define [X,Y] = XY — Y X. This is

7



1.1. REVIEW OF THE RIEMANNIAN MANIFOLDS

a function from F (M) to F(M) sending each f to X (Y f) —Y (X f). We can shows that [X,Y]
is a derivation on F (M), which is called the bracket of X and Y. The bracket gives to each
p € M the tangent vector [X, Y], such that

(X, Y](f) = X, (V) = V(X )
We have, the bracket operation has the following properties:
1. [X,Y] ==Y, X] (skew-symmetry),
2. [aX +bY,Z) =alX, Z]+ VY, Z],[Z,aX + VY] = a[Z, X]| 4+ b[Z,Y] (R-bilinearity),
3. (X, Y. Z)| + 1Y, [Z, X]| + [Z,]X,Y]] = 0 (Jacobi identity).

Definition 1.1.3. An connection ¥V on a smooth manifold M is a mapping V : X (M) X
X(M) — X(M), (X,Y) — VxY that satisfies the following conditions:

1. VX(Y+Z)=va+VXz,
2. VfXJrgYZ = fVXZ—l-ngZ,

3. Vx(fY) = fVxY + X(f)Y (Leibniz rule)
forall XY, Z € X(M) and f,g € F(M)

Definition 1.1.4. Let a: [ —> M be a curve in a manifold M, a vector field along the curve
a is a smooth map such that: for every t € I gives a tangent vector V(t) € TowM. To say
that V' is smooth means that for any smooth function f on M, the function t — V(t)f is a

smooth function on I. Where I is an open interval in R.

Proposition 1.1.2. Let M be a Riemannian manifold with connection V, and o a curve of
M. Then there exists a unique operator that associates to a vector field V' along the curve «
another vector field V'(t) = D,V (t) along «, such that:

1. Dy(aV +bW) =aD,V +bD,W,a,b € R

2. Do(fV) =4V + fD,V, f € F(I)

3. (V) W(t)) = (DaV (1), W(1)) + (V(t), DaW (1))

4 IFV(t) = Y(a(t)) where Y € X(M), then DoV (t) = VY

8



1.1. REVIEW OF THE RIEMANNIAN MANIFOLDS

In the special case that D,V (t) = 0, the vector field V' along « is called parallel.

The following definition is motivated from the notion of a parallel vector field along a curve:

Definition 1.1.5. A geodesic in a Riemannian manifold M is a curve v : I — M whose
vector field v is parallel, that is,
V., =0

Remark 1. A linear connection V on a Riemannian manifold (M, (,)) is called compatible
with the Riemannian metric if, for any smooth curve o : I — M and for any to,t; € I, the

parallel transport Ty, ¢, Too)M — Tou, )M preserves the scalar product.

Proposition 1.1.3. Let (M, {(,)) be a Riemannian manifold and V a linear connection. The

following points are equivalent:
1. 'V is compatible with the metric.

2. For any a: I — M and any vector fields V,W along «

d

Z V0, W) = (DaV(£), W) + (V(1), DaW (1))

3. For any X,Y,Z € X(M),

V(Y. Z) = X (Y, Z) — (VxY, Z) = (VxZ,Y) = 0
Levi-Civita connection The following theorem is a fundamental result in Riemannian

geometry

Theorem 1.1.1. Given a Riemannian manifold (M, (,), there exists a unique linear connection
V (called the Levi-Civita or Riemannian connection) such that:
(i) VxY = VyX — [ X, Y] =0,VX,Y € X(M).

(i1) V is compatible with the metric, this is equivalent to

X(Y,Z) = (VxY,Z)+ (Vx Z,Y) VXY, Z € X(M)

This connection is characterized by the Koszul formula.

UVXY,Z) = XAV, Z)+Y.AX,Z) — Z(X,Y)
+(X,Y],Z2) +([Z, X],Y)+ ([Z, Y], X).

9



1.1. REVIEW OF THE RIEMANNIAN MANIFOLDS

Proof. To compute VxY it is sufficient to compute (VxY, Z), because (,) is nondegenerate.

By using over and over the fact that V is compatible with the metric and torsion free, we get

(VxY,Z) =X.AY,Z) — (Y,VxZ)
— XY, Z) — (Y,V,X) - (V,[X, Z])
= XY, Z) — Z.(Y,X) + (V2Y, X) — (Y, [X, Z])
= XY, Z) — Z.0Y, X) + (Vy 2, X) + ([Z,Y], X) — (Y, [X, Z])
= XY, Z) — Z.(Y, X) + YAZ,X) — (2, VyX) + ([Z,Y], X) — (V,[X, Z])
= XY, Z) — Z.0Y, X) + Y(Z,X) — (Z,VxY) + (Z,[X,Y]) + ([Z. X],Y) + (2, Y], X).

Thus

2AVXY,Z) = XY, Z)+Y(X,Z) — Z.(X,Y)

(1.1)
X, Y], 2) + (2, X],Y) + ([Z.Y], X).

This formula gives the uniqueness and can be used to define V. O]

We will give the notion of curvature, the Riemann curvature tensor is one of the basic in-
variants of a Riemannian manifold. In fact, Riemann introduced the notion of the sectional
curvature in geometric manner as an extension of the Gaussian curvature for surfaces to arbi-
trary Riemannian manifolds. His definition was not a practical. It took several years to reach

a formulation that is easy to use to prove theorems.

Definition 1.1.6. Let M be a Riemannian manifold, with Levi-Civita connection V. The

Riemann curvature tensor is the function
R:X(M)x X(M)x X(M) — X(M)
given by
R(X,)Y)Z =Vixy|1Z —VxVyZ +VyVxZ. (1.2)

Theorem 1.1.2. Let M be a Riemannian manifold and R a Riemann curvature tensor, then

R satisfying the following:
1. R is a tensor field of type (3,1).

2. R is the unique tensor field satisfying for any variation (s,t) — I'(s,t) € M and any
vector field along T’

DsDrY — DrDgY = —R(S,T)Y. (1.3)

10



1.1. REVIEW OF THE RIEMANNIAN MANIFOLDS

Proof. 1. We will show that R given by 1.2 is a tensor field, i.e., it is C*°(M) 3-linear. Let
f e C®(M). we have

“R(FX,Y)Z =VixVyZ —VyVixZ — Vipxn Z
= fVxVyZ = Vy [VxZ = Vixy)-v(nxZ
= fVxVyZ — fVyNxZ =Y (f)VxZ — [V xy1Z + Y (f)VxZ
— _fR(X,Y)Z

Since R(X,Y)Z = —R(Y, X)Z, then we have R(X, fY)Z = fR(X,Y)Z. On the other

hand, we have

—R(X,Y)fZ =VxVyfZ-VyVxfZ—-VixvfZ
=Vx(fVyZ+Y()Z) = Vy(fVxZ + X(f)Z) = fVxnZ - [X.Y|(f)Z
= [VxVyZ+ X(f)VyZ +Y()VxZ + X(Y(f))Z = fVyVxZ =Y (f)VxZ
—X(f)IVyZ =Y(X(f)Z = [VixnZ = [X,Y](f)Z
= —fR(X)Y)Z,

2. Put I'(s,t) = (z1(s,1), ..., xn(s,t)), where (x1,...,x,) a coordinates system and let ¥ =
> Yi(s, t)0;. We have

T(s,t) = Z %&' and S(s,t) = %&-

i=1 =1

DY = Z

8Y6?:cj 8}/;81']- 0% 8x]8xk
DsDrY¥ = Zaaﬂ Z(a o o as+atas)v"’a+zyat s Vo0

ax] Va 0,

In the same way we get DrDgY . Then we get

(DsDy — DpDg)Y =30, YVi%1%5(V,, V.0, — Vo, Vo, ;)

= = Y Vi 22 R(0;, 04)0;
= —R(S,T)Y

3. Now we show the uniqueness of R, Let R’ be a (3,1)-tensor field satisfying 1.3. Let
p € M and ¢ = (z1,...,x,) a coordinates system around p satisfying ¢(p) = 0. For

i,7 € {1,...,n} fixed, we consider the variation I" given by
[(s,t) =v"0,...,8,...,t,...,0)

11



1.1. REVIEW OF THE RIEMANNIAN MANIFOLDS

, s at the i-place and t at the j-place. We have S = 0; and T' = 0; and let Y = 0. Since
R’ satisfies 1.3, we get

R'(8;,0,)0, = —(DsDy — DrDg)Y = R(9;,;)0%

thus R’ = R.

A simpler real-valued function that completely determines R is the sectional curvature.

Definition 1.1.7. Let (M, (,)) be a Riemannian manifold. For any p € M Let V be a two-
dimensional subspace of T,M and let u,v € V be two linearly independent vectors. Then the

number

B (R(u,v)u,v)
Qu,v) = (u, u){v,v) — (u,v)?

does not depend on the choice of the vectors u,v. It is called the sectional curvature of V at p.

Theorem 1.1.3. The curvature tensor at a point p is uniquely determined by the sectional

curvatures of all the two-dimensional subspaces V' of the tangent space T,M.

A Riemannian manifold is said to have constant sectional curvature (positive or negative)
if Q(V) is a constant (positive or negative) for all planes V' in T, M and for all points p € M. If

the sectional curvature is zero at every point, then the Riemannian manifold is said to be flat.

Definition 1.1.8. Let (M, (,)) be a Riemannian metric and R its curvature tensor. The Ricci

curvature Ric(X,Y) of M is the trace of the map Z — R(X,Z)Y
Let (e, ..., e,) be an orthonormal basis of T,,M, we have for any u,v € T,M,

ric(u,v) = tr(z — R(u,z)v)
= 21 (R(u, €)v, €;)
= Z?:l <R(1}, ei)“? ei)

= ric(v, u)
We can see the Ricci curvature as an endomorphism Ric, : T, M — T),M such that
ric(u, v) = (Ricy(u),v) = (Ric(v),u),Vu,v € T,M

Thus .
Ric,(u) = Z R(u,e;)e;.
i=1

12



1.2. LIE GROUPS

We call Ric Ricci operator. It is a symmetric field of endomorphism and hence has real eigen-
values in each point p € M say /\11, < ... < Aj. The metric has positive (resp. strictly positive)
Ricci curvature if, for any ¢ = 1, ..., n, )\; > 0 (resp. )\; > 0). In analogue way, we can define
metric of negative Ricci curvature and strictly negative curvature. The metric is called Einstein

if ric = A(,) where A is a constant.

Definition 1.1.9. The scalar curvature of (M, (,)) is the C* function s : M — R given by

n n

s(p) = tr(Ric,) = Z AL = Zric(ei, e;)

i=1 i=1

1.2 Lie groups

Definition 1.2.1. A Lie group is a group G, equipped with a manifold structure such that the
group operations

(i) The map p: G x G — G defined by p(g, h) = gh is smooth when G x G is endowed with the
product manifold structure.

(11) The map inv : G — G defined by inv(g) = g~ is smooth.

A morphism of Lie groups G, G' is a morphism of groups ¢ : G — G’ that is smooth.

Example 2. Any discrete group G is a Lie group of dimension zero. In particular Z or more

generally 7", is a Lie group. It is a closed subgroup of R™.

Example 3. The multiplicative group R* is a Lie group. It is not connected. R of positive real
numbers is also a Lie group. Similarly, C* is a (2 dimensional) Lie group which is connected.

It 1s a complex Lie group.

Example 4. The unit circle S' is a Lie group. There are two ways to see this. One is by
considering St in C* with multiplication induced from C* The other is by using the identification
s' = R/Z. The set Z of integers is a normal subgroup of R, and so R/Z is a group, and since
it is discrete, R/Z is also a manifold. The smooth addition of R induces a smooth addition in

R/Z.

Example 5. The product G x H of two Lie groups is itself a Lie group with the product
manifold structure, and multiplication (g1, h1)(g2, h2) = (9192, hihs), as example for this The

n-torus T™ = St x ... x St (n times) is a Lie group of dimension n.

13



1.2. LIE GROUPS

Example 6. GL,(R), is a (dense) open subset of M,(R) and thus has a manifold structure
in which multiplication is a polynomial function of the coordinates. Moreover, inversion is a
rational function of the coordinates with a non vanishing denominator. Hence GL,(R) is a real

Lie group of dimension n?.

The following examples of Lie groups are obtained as closed subgroups of the general linear

group, so we need the following definitions.

Definition 1.2.2. A Lie subgroup of a Lie group G is a Lie group H that is an abstract subgroup

and an tmmersed submanifold of G.
We have the following theorem :

Theorem 1.2.1 (E. Cartan’s theorem.). Let H be a closed subgroup of a Lie group G. Then

H is an embedded submanifold, and hence is a Lie subgroup.

We can now give more examples of Lie groups that are defined by using functions on M, (R)
as the determinant, transpose and complex conjugate, hence are Lie groups by the previous

theorem.

Example 7. (1) The special linear group is SL(n,R) = {A € GL,(R) : det(A) = 1}.

(2) The orthogonal group is the group O(n) = {A € GL,(R) : A'A = I,}. The condition
A'A = I, is equivalent to A~' = A" and so O(n) = F~(I,), where F : GL,(R) — GL,(R)
with F(A) = A'A.

(3) The special. orthogonal group is the group SO(n) ={A € O(n) : det(A) = 1}.

Let = be an element of a Lie group G. We define the maps

L,:G— G, L,(g9) = zg (left translation).
R, : G — G, R.(g9) = gz (right translation)

These maps are smooth, in fact they are diffeomorphisms since, the inverse of L, is L,-1. We

have (dL,-1), : T,G — T.G is isomorphism of vector spaces, then we have the following:
Proposition 1.2.1. Any Lie group G is parallelizable, i.e. TG = G x T,G
Definition 1.2.3. A wvector field X on G is left invariant if for all g € G, we have:

Xgo = T Ly(Xy)

14
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The set of left-invariant vector fields on G is denoted X!(G), it is a Lie subalgebra of X (G)
for the bracket of vector fields, since it is closed under the bracket on Vector fields.
In fact, X'(G) is a real vector space of finite dimension equal to the dimension of G and this
result comes from that the map ¢ : X'(G) — T,G given by X +—— X, is an isomorphism of
vector spaces. The isomorphism ¢ allows to transport the Lie algebra structure of X*(G) on
T.G as follows: if we denote for all u € T.G,v' := ¢~ (v) € X(G) we get a structure of Lie
algebra on T,G given by the bracket:

[u,v] = [u', v']..

Then we call Lie algebra of G' and we denote by g = T.G.

Proposition 1.2.2. If ¢ : G — H is a homomorphism of Lie groups, then the map d.¢ :
g — b is a homomorphism of Lie algebras,

These are Lie’s results:

Theorem 1.2.2 (An). (i) For any Lie algebra g there is a Lie group G (not necessarily unique)
whose Lie algebra is g.

(ii) Let G be a Lie group with Lie algebra g. If H is a Lie subgroup of G with Lie algebra
b, then b s a Lie subalgebra of g. Conversely, for each Lie subalgebra §y of g, there exists a
unique connected Lie subgroup H of G which has by as its Lie algebra.

(iii) Let G, Gy be Lie groups with corresponding Lie algebras g1, go. Then if g1 and go are
isomorphic as Lie algebras, then G1 and Go are locally isomorphic. If the Lie groups G, Gs

are simply connected (i.e. their fundamental groups are trivial), then Gy is isomorphic to Gs.

1.3 Action of Lie groups on manifolds and representa-

tions

Definition 1.3.1. Let G be a group and M a set. Then G is said to act on M (on the left) if
there is a map 0 : G x M — M such that:
(i) If e is the identity element of G then

Ole,x)=x for all zeM
(”) ]f 91,92 € G} then
e(gla 9(92a Jf)) = 9(9192733) fOT' all zeM

15
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0(g,x) denoted by g.x

A right action is defined analogously as map 6 : M x G — G with 6(z, g) = z.g.
Now suppose G is a Lie group and M is a manifold. An action of G on M is said to be
continuous if the map 6 is continuous, and it is smooth if the map 6 is smooth.

The conditions (i) and (ii) for a left action give
0(g1,.) 0 0(g2,.) =6(g192,.)
9(6, ) = ]dM

Thus, for a continuous action each 6(g,.) : M — M is a homeomorphism because it has an
inverse 0(g~',.) continuous. If the action is smooth, then each 6(g,.) is a diffeomorphism.

e For any x € M, the orbit of x under the action is the sets
Gz ={g.x: g€ G},

the set of all images of x under the action by elements of G.

e The action is transitive if for any two points x,y € M, there is a group element g such

that g.x = y, or equivalently if the orbit of any point is all of M.

e Given x € M, the isotropy group of z, denoted by G,, is the set of elements g € GG
that fix x:

G, ={9€G:gx=ux}

e The action is said to be free if the only element of G that fixes any element of M is the
identity: g.x = x for some x € X implies g = e. This is equivalent to the requirement that

G, = {e} for every z € M.

Example 8. The natural action of GL(n,R) on R™ is the left action given by matriz mul-
tiplication: (A,x) — Ax, considering x € R" as a column matriz. This an action because
I,x = x and matriz multiplication is associative:(AB)x = A(Bx). Because any nonzero vector

can be taken to any other by some linear transformation, there are exactly two orbits: {0} and

R™{0).

Example 9. The restriction of the natural action to O(n) x R" — R™ defines a left action

of O(n) on R™. Any nonzero vector of length R can be taken to any other by an orthogonal
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matriz. (If v and v’ are such vectors, complete v,/ |v| and V' /|v'| to orthonormal bases and let
A and A’ be the orthogonal matrices whose columns are these orthonormal bases; then A’ A1

takes v to v'). In this case, the orbits are the origin and the spheres centered at the origin.

Example 10. The restriction of the natural action to O(n) x S"!' — S"™1 we obtain a

transitive action of O(n) on S

Example 11. The natural action of O(n) restricts to an action of SO(n) on S*~t. For SO(1),
this is trivial because SO(1) = {1}. But For n > 1, SO(n) acts transitively on S"~*. Since
O(n) acts transitively, there is a matriz A € O(n) taking e; to v. Fither detA = 1, in which
case A € SO(n), or detA = —1, in which case the matriz obtained by multiplying the last
column of A by —1 is in SO(n) and still takes ey to v.

1.3.1 Representations theory

There are different reasons to look for the representations. For example, a representation is a
useful tool for understanding the group and its possible invariants. Since the Lie groups are
often the symmetry groups of spaces of functions, finding the ways in which a group can act

helps to understand these spaces.

Definition 1.3.2. Let G be a Lie group. A (finite-dimensional) representation of G is a
Lie homomorphism p : G — Aut(V'), where V is a (finite-dimensional) vector space. The

dimension of the representation is the dimension of the vector space V. Where Aut(V) =

GL(V)
Any representation p defines a smooth action of G on V:
gv=p(g), for geGuveV

Definition 1.3.3. An action of G on a finite-dimensional vector space V is said to be linear

if for each g € G the map v — g.v is linear.

Remark 2. We have for any representation p : G — GL(V') the action g.v = p(g)v, for g €
G,v € V is linear. And the image of p is a Lie subgroup og GL(V'), if p is injective then the

representation is called faithful representation

Proposition 1.3.1. Let G be a Lie group and let V' be a finite-dimensional vector space, then

a smooth action of G on V' is linear if and only if it has a form for some representation p of

G.

17
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Example 12. Let G = R" and V = R", put p: R* — GL(n + 1,R) the map sends x € R"
to the matriz p(x) = (

I, =x

0 ) , we have p is a faithful representation of the Lie group R™.

Example 13. If G is any Lie subgroup of GL(n,R), the inclusion map G — GL(n,R) is a

faithful representation.

Example 14. Let G = R" and V = C", put p : R — GL(n,C) for x € R", p(x) is the

diagonal matriz with diagonal entries (> ..., e*™n)

ey € . This action is not faithful, since its

kernel 1s 7.

Example 15. The adjoint representation

Let G be a Lie group and v € G. Then the map C, : G — G sending each g to :xgxr~*

is @ homomorphism and, because C, = R,-1 o L, is a diffeomorphism, it is called an inner
automorphism of G. We let Ad(g) = (d.Cy) : 9 —> g. This is a homomorphism since
Cyy = C,0C,, implies that Ad(zy) = Ad, 0 Ad, (We take differentials). And Ad(x) is invertible
with inverse Ad(z™'). It is also smooth (see [Lee]). Then Ad : G — GL(g) is a representation,

called the adjoint representation.

Remark 3. If p is any representation of G, then d.p : g — GL(g) is a representation of
g, when g is the Lie algebra of G. As an example ad(u) = d.Ad(u) is called the adjoint

representation of g.

Proposition 1.3.2. The correspondence ad : ¢ — End(g),u — ad,, is called the adjoint

representation of Lie algebra g. Moreover, if u,v € g, then:
ad,(v) = [u,v]
Remark 4. g is unimodular if and only if tr(ad,) = 0,Vu € g.

Definition 1.3.4. A continuous action is said to be proper if the map:

GxM — MxM
(9,2) — (9., 7)

1s a proper map. Where proper map is defined as a map between topological spaces such that, its

preimage of a compact subset is compact itself.
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Proposition 1.3.3. Let M be a manifold, and let G be a Lie group acting continuously on M.
Then, the action is proper if and only if following holds: If (p;) is a convergent sequence in M

and (g;) is sequence in G such that (g;.p;) converge in M , then a subsequence of (g;) converge
in G.

Corollary 1.3.1. Any continuous action by a compact Lie group on a manifold is proper.

1.4 Orbits and homogeneous spaces

Let a Lie group G acts on a manifold M. We can define an equivalence relation on M by
setting p ~ ¢ if there exists g € G such that g.p = ¢q. The set of orbits is denoted by M /G; with
the quotient topology it is called the orbit space of the action. It is important to determine

conditions such that an orbit space is a smooth manifold.

Theorem 1.4.1 (Quotient Manifold Theorem see [15]). Suppose G is a Lie group acting
smoothly,freely and properly on a smooth manifold M.Then the orbit space M/G is a topo-
logical manifold of dimension equal to dim(M) — dim(G), and has a unique smooth structure

with the property that the quotient map ©: M — M/G is a smooth submersion.

Let G be a Lie group and H a closed subgroup of GG, it is possible to make a smooth manifold
on the set G/H = {gH : g € G}. Furthermore, We will see that the group G acts in a natural
way on G/H , and this action such that any two points in G/H can be joined by the action
of G, i.e., the action is transitive. This manifold with this transitive action will be called a
homogeneous space, and it includes a large variety of manifolds with special importance in
mathematics and physics.

Consider the coset space G/H. Let m : G — G/H denote the projection that sends each
g € G to the coset gH.

Theorem 1.4.2 (see [15]). Let G be a Lie group, and H a closed subgroup of G. Then there is

a unique way to make G/H a manifold so that the projection 7 : G — G/H is a submersion.

Theorem 1.4.3 (see [15]). Let G x M — M be a transitive action of a Lie group G on a
manifold M, and let H = G, be the isotropy subgroup of a point x € M. Then:

1. The subgroup H s a closed subgroup of G.

2. The map v : G/H — M given by v(gH) = g.x is a diffeomorphism.( the orbit G.z is
diffeomorphic to G/H ).
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3. The dimension of G/H is dimG — dim H.

Definition 1.4.1. A homogeneous space is a manifold M with a transitive action of a Lie
group G. FEquivalently, it is a manifold of the form G/H , where G is a Lie group and H a
closed subgroup of G.

Example 16. Any Lie group is a homogeneous space, since there are two representations:
G = G x G/G = G/{e}. For the first representation of G as a homogeneous space, G x G
acts on G by left and right translations, and the isotropy subgroup is G diagonally embedded in
G xG.

Definition 1.4.2. Let M be a Riemannian manifold, we call M A Riemannian homogeneous

space on which its isometry group I(M) acts transitively.

Remark 5. The isometry group of a Riemannian manifold is a Lie group (this is theorem of
Myers-Steenrod).

Example 17. The group O(n+1) acts on the unit sphere S™ in R"** whenn > 1. This action is
transitive as in example 10. In Example 11, SO(n+1) acts transitively on S™. Then forn > 1,
S™ is a homogeneous space. Thus S™ is diffeomorphic to the quotient manifold O(n + 1)/O(n)
and also it is diffeomorphic to SO(n+1)/SO(n)

Ab

Example 18. The Euclidean group E(n) = {( 01 ) : A€ O(n),b eR"} acts transitively

Ab
on R" by the action < 01 ) ex = Ax+b. Thus R" is a homogeneous E(n)- space.

a b
Example 19. SL(2,R) acts transitively by Mdébius transformations (( p ) z = %} on
c

the upper half plane H = {z € C : Imz > 0}, then H is homogeneous space and we have the
isotropy group of i € H is exactly SO(2). Thus H~ SL(2,R)/SO(2).

Example 20 (Grassmanna Manifolds). The set of all k-dimensional (vector) subspaces V- C R"
is called the Grassmann manifold of k-planes in R™ and denoted by Gy ,(R). The group O(n)
acts naturally on Gy ,(R) by matriz multiplication, for V' k-plane in R" gives AV = W. This
action s transitive: Let V be a k-plane in R™ spanned by the first k vectors of the canonical basis

{e1,...,en} of R". Let W be a k-plane in R™ spanned by the first k vectors of an orthonormal
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basis {€},...,e,} of R™ if A is the matriz that corresponds to the linear map that sends each e;

to e;, then A € O(n) and AV =W The isotropy subgroup of the subspace V is:
A 0O
( AL € O(k) and Ay € O(n—k)}
0 A
Thus G »(R) is diffeomorphic to O(n)/(O(k) x O(n — k).
Example 21 (Flag Manifolds). Let E be a real vector space of dimension n > 1, and let
K = (ki,....kn), where (k;), satisfying 0 < ky < ... < ky, < n. A flag in E of type K is a
nested sequence of linear subspaces Vi C Vo C ... C V,, C E, with dimV; = k; for each i. The
set of flag of type K in E is denoted by Fi(F), we have GL(E) acts transitively on Fg(FE).

1.5 Invariant Riemannian metrics

Let G be a Lie group, we have GG is a smooth manifold and it is a group, it is usual to use
Riemannian metrics of G with its group structure. These metrics have the property that the

left translations L, : G — G are isometries for all a € G. More precisely, we have:

Definition 1.5.1. A Riemannian metric on a Lie group G is called left invariant if for all

a€ G Lig=g e Forallxz,aed,
gax(Ta:La(u)a TmLa(U)) = gx(u7 U)7 u,v € TxG
Similarly, a Riemannian metric is right invariant if each R, : G — G is an isometry.

Denote by g the Lie algebra of G, M!(G) the set of left invariant metrics on G' and M(g)

the set of scalar products on g.

Proposition 1.5.1. There is a one-to-one correspondence between left invariant metrics on a
Lie group G, and scalar products on its Lie algebra g i.e the map ® : MY(G) — M(g) is a

bijection.

Proposition 1.5.2. Let X, Y be two left invariant vector fields on G and g be a left invariant
metric on G. Then the function G — R, z —— ¢,(X,,Y,) is constant equal to g.(Xe, Ye).

Proof. Let € G, since X and Y are left invariant then X, = T,L.(X.) and Y, = T,L,(Y,).

And we have g is left invariant, we get that:

gZ‘<X$7 3/96) = gm(TeLm(Xe)aTeLmG/e)) - L*ge(Xeylfe) = ge(X€7}/;),
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Definition 1.5.2. We call Riemannian Lie group any pair (G,g) where G is a Lie group and

g 1s a left invariant metric on G.

Definition 1.5.3. A metric g on a Lie group G is said to be bi-invariant when it is both right

and left invariant.

Proposition 1.5.3. There is a one-to-one correspondence between bi- invariant metrics on
G and Ad-invariant scalar products on g, that is (Ad(g)X,Ad(q)Y) = (X,Y) for all g €
G, X,)Y €g.

Now, regarding the existence of bi-invariant metrics, here is a theorem which determines

the class of Lie groups admitting such metrics:

Theorem 1.5.1. (i) A connected Lie group carries a bi-invariant Riemannian metric if and

only if it is isomorphic to the cartesian product of a compact Lie group and an abelian Lie

group.
(i) If the Lie algebra of a compact Lie group G is simple, then G admits a bi-invariant Rie-

mannian metric which is unique up to positive multiplicative constant.

In general, the existence of a bi-invariant metric on a Lie group is a precise problem and
there are examples where the answer is not affirmative. However, if (G, g) is a Riemannian Lie

group, there is a way to measure the obstruction for g to be bi-invariant. For this, we pose:
I(g)={x € G:Ad, is an isometry of(g,9.=(,))}

We have I(g) is a subgroup of G and that ¢ is bi-invariant if and only if I(g) = G. On the
other hand, the group I(g) is closed in G and it therefore has a Lie group structure. We denote
in the following K'(g) the Lie algebra of I(g).

Proposition 1.5.4. We have K(g) = {u € g : ad, + ad}, = 0} where ad}, adjoint of ad,.
Proof. Let u € K(g), we have Vt € R, exp(tu) € I(g). In other words, we have for all v,w € g
(Adexp(tu)V, Adexpuyw) = (v, w)

By deriving at t = 0 we obtain that:
(ad,(v), w) + (v,ad,(w)) = 0.
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Thus ad, + ad;, = 0.
Conversely, Let u € g such that ad, + ad;, = 0 we need to prove that u € K(g), we define for
allt € R

F(t) = (Adexp(ruy v, Adesp(uyw)
By calculation the derivative of f we have
f/ (t) = %<Adexp(tu)va Adexp(tu)w>
= s ls=0{Adexp(a ey Vs Adesp((styu0)
% |s:0 <Adexp(su) © Adexp(tu)va dexp(su) © Adexp(tu)w>
<adu © Adexp(tu)v’ Adexp(tu)w> + <Adexp(tu)vu adu © Adexp(tu)w>
= 0

Thus f is constant, hence f(t) = f(0). Then Adegp) is an isometry of (g, g. = (,)), this give
exp(tu) € I(g) for all t € R then u € K(g). O

Corollary 1.5.1. If the metric g is bi-invariant then ad, is anti-adjoint with respect to g. = (,)

for allu € g.

1.6 Connections on a Riemannian Lie group

Let (G, g) be a Riemannian Lie group and let g be the Lie algebra of the group G and g, = (,).
Denote by V¢ the Levi-Civita connection of (G,g), R® the curvature tensor, QY sectional
curvature, Ric® the Ricci tensor of (G, g), ric” the Ricci curvature of (G, g) and s the scalar

curvature of (G, g).

Definition 1.6.1. The Levi-Civita product on Lie algebra (g, (,)) is the bilinear application
A:gxg—g, (u,v) — Ayv given by the formula:

2(A v, w) = ([u,v], w) + ((w, u],v) + (w, v], u)

Proposition 1.6.1. Let g be a left invariant metric on a Lie group G. If {ei,...,e,} is an or-
thonormal basis of (g, g.), then the family {e\, ..., e} defines an orthonormal coordinate system

of the Lie group (G, g).
Proposition 1.6.2. For all u,v € g, the vector field ngl is left invariant and we have:
Vo = (A0)
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Proof. Let X = u! and Y = v! with u,v € g. Let {ey, ..., e, } be an orthonormal basis of (g, g.),
then the family {e!, ..., ¢!} defines an orthonormal coordinate system of (G, g). Then

ulv —Zg Vuw,e

For all 1 < i < n, by the Koszul formula 1.1 of the Levi-Civita connection we have
29(Vav',e)) = ul.g(v' ef) + ' g(u',ef) — el.g(u',v')
+o([u', v, €f) + g([ef, u'], v') + g([ef, 0] ).
By the proposition 1.5.2 we have g(v', €!), g(u!, €!) and g(u!,v') are constants then u'.g(v!, el) =
vhg(ul el) = el.g(ul,vt) = 0. Thus
2g(VGut el) = 2(A,0, e;)

Then

n

lv = Zg Vulv ,e (Z(Auv, ei>ei> = (A,v)

=1

Let RY the curvature tensor of (G, g) then for all XY, Z € X(G) we have:
RY(X,Y)Z = Vixy — [V V¥]Z

Definition 1.6.2. We call curvature of the Lie algebra (g, (, )y) the bilinear map Ky : gx g —
End(g) given by the formula:

Kg(% U) = A[u,v} - [Azu Av]

Proposition 1.6.3. For all u,v,w € g, the vector field RC(u!,v")w! is left invariant on G and

we have:
RE (!, v ' = (Ky(u,v)w).

Proof. Let u,v,w € g. we have [u',v'] = [u,v]' and V&' = (A,v)". Then we have:

R (ul, vh)w! :Vﬁlv, — VEVauw + VEVauw!

= V& ' = VG(Aw)' + VE(Auw)
= (Apow) — (A Ayw) + (A, Aw)

= (Kg(u, v)w)
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Proposition 1.6.4. Let x € G and u,v € T, M, then we have:
QF (u,v) = Q (T Ly (u), T L (v))

The following proposition is a consequence of the elementary properties of the curvature

tensor RC.
Proposition 1.6.5. Let u,v,w, z € g we have the following properties:
1. Ky(u,v) = —Ky(v,u) anti-symmetry
2. Kg(u,v)w + Ky(w, u)v + Ky(v,w)u =0
3. (Kg(u,v)w, z) = (Kg4(w, z)u,v)
b (Ko, 2) = —(Kq(u,0)z, )

Definition 1.6.3. The Ricci operator of the Lie algebra (g, (,)) is the linear map Ricg: g — g
given by:

(Ricg(u),v) = tr(w — Ky(u,w)v) = Z(Kg(u, ei)v, €;).
where (e;)"_, an orthonormal basis of (g, (,)).

Proposition 1.6.6. For all u,v,w € g, the vector field Ric%(u') is left invariant on G and we

have:
Ric®(u') = (Ricg(u))"

Corollary 1.6.1. The scalar curvature s© is constant and the function ric® (ul,v') is constant

for all u,v € g.

1.7 Left invariant metrics on simply connected three di-

mensional unimodular Lie groups

In this section, we list all the three-dimensional simply connected Lie groups, and for each such
G we give all the left invariant Riemannian metrics on G up to automorphis. These results are
in reference [7].

They are sixe unimodular simply connected three dimensional unimodular Lie groups:
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1. The abelian case is isomorphic to R3.

2. The nilpotent Lie group Nil known as Heisenberg group whose Lie algebra will be denoted

by n. We have
1 = =z 0 =z =z
Nil = 01 yl,z,y,z€R and n= 00 yl|,zr,y,2z€R
0 01 0 0 O

The Lie algebra n has a basis By = (X1, X, X3) where

010
X1: 0 0 0 7X2:
0 00

o o O
o o O

0 0 01
1 and X3=10 0 0
0 0 00
and where the non-vanishing Lie brackets are [ X7, Xs] = Xj3.

bi —c—+di
3. SU(2) = oo mera a2+ b+ +d* =1, and
c+di a—bi

su(2) = {( " y—f—m) LY, 2 € R}. The Lie algebra su(2) has a basis By =

—y+xi —z
(X17 X27 X3)

1 (0 i 1{0 1 1 (i 0
Xi==( "), x,== and Xy= |
2\i 0 2\-10 2\0 i

and where the non-vanishing Lie brackets are

[XlaXQ] - X?n [X27X3] = Xl and [X?)?Xl] = XQ‘

4. The universal covering group F?Si(l R) of SL(2,R) whose Lie algebra is sl(2,R). The Lie
algebra sl(2,R) has a basis By = (X1, Xa, X3) where

101 1({1 0 1 0 1
Xlz— ,XQZ— and X3:—
2\ 10 2\ 0 -1 2\ -10
and where the non-vanishing Lie brackets are

[Xl,XQ] = —Xg, [X27X3] =X; and [X37Xl] = Xs.
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e 0 vy
5. The solvable Lie group Sol = 0 e® z|,r,y,2€ Ry whose Lie algebra is sol =
0 O
z 0 vy
0 —x z|,z,y,2€Rp. The Lie algebra sol has a basis By = (X1, Xy, X3) where
0 0 0
00 1 0 00 0
Xi=100 0],Xo=1]0 0 1 and Xz= |0 —1 0
000 000 0 0 0
and where the non-vanishing Lie brackets are
[Xg,Xl] = X1 and [XJ,XQ] = —XQ.
6. The universal covering group EVO(Z) of the Lie group
cos(f) sin(d) =z
Eo(2) = —sin(f) cos(d) y |,0, v,y ER
0 0 1
Its Lie algebra is
0 6 x
60(2): -0 0 ) 7673/726R
0 00
The Lie algebra eg(2) has a basis By = (X1, X2, X3) where
001 000 0 —1 0
Xi=100 0|,Xe=1]0 01 and Xz= |1 0 0
000 0 00 0 0 0

and where the non-vanishing Lie brackets are

[Xg,Xl] = X2 and [Xg,XQ] = —Xl.

In Table 1.1, we collect the informations on these Lie algebras we will use in the chapter
three. For each Lie algebra among the five Lie algebras above, we give the set of its homo-

morphisms and the equivalence classes of Riemannian metrics carried out by this Lie algebra.
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These equivalence classes were determined in [7, Theorems 3.3-3.7]. For n, sol and ey(2) the ho-
momorphisms can be determined easily. For su(2) and sl(2,R) an homomorphism is necessarily

an inner automorphism and these were determined in [4].

Lie algebra | Non-vanishing Lie brackets Homomorphisms Equivalence classes
of Metrics
o] Qo 0
n (X1, Xo] = X3 B P 0 Diag(A, A, 1), A >0
az Pz 1P —anfh
0 0 a a —f0 a
0@ | XXl = X X X =—x, | (OO P e b Diag(l, 1, v),
00~/ \o o 1
a [ a
B —a b |, #1 O<pu<l,r>0
0o 0 -1
0 0 a a 0 a
sol X, X1] = X0, X X = =5 | [C 00020 wofr
0 0 ~ 0 0 1 0 v
0 B a
a 0 b |.,7*#1 Diag(1,1,v)
0 0 -1
v>0,u>1
sl(2,R) X, X = =X, [Xa, K] = X, Rot,,.Boost,,.Boost,, Diag(h, 1, v),
(Xo, X3] = X, 0O<A<pandv >0
su(2) X1, Xo] = X3, [Xa, K] = Xz, Rot,,.Rot,..Rot,, Diag(A, 1,)
[Xo, X3] = X, O<v<u<A
Table 1.1
cos(a) sin(a) 0 cos(a) 0 sin(a) 1 0 0
Rotyy = | —sin(a) cos(a) 0 |,Rot,, = 0 1 0 ;Rot,. = | 0 cos(a) sin(a)
0 0 1 —sin(a) 0 cos(a) 0 —sin(a) cos(a)
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cosh(a) 0 sinh(a) 1 0 0
Boost,, = 0 1 0 ,Boosty, = | 0 cosh(a) sinh(a)
sinh(a) 0 cosh(a) 0 sinh(a) cosh(a)

1.7.1  The abelian Lie group r?

We consider the 3-dimensional unimodular abelian Lie group R and R?® its Lie algebra. The

Lie algebra R? has a basis By = (X1, X3, X3) such that
[Xl,XQ] = O, [X3,X1] = 0 and [Xg,XQ] = 0

Theorem 1.7.1 ([7]). Let (, ) be a scalar product on R®. Then there exists an automorphism

¢ of R® such that

Mat((b*(( ) >)aBO) =

o O =
o = O

We have the set of homomorphisms of R? is

H(R?) = M;(R®).

1.7.2 The Heisenberg group Nil

We consider the 3-dimensional unimodular Lie group H and we denote by n its Lie algebra.

The Lie algebra n has a basis By = (X1, X5, X3) such that
[Xla XQ] = X37 [X37X1] =0 and [X37 X2} =0.
The following result will be useful later in chapter 3.

Theorem 1.7.2 ([7]). Let (, ) be a scalar product on n. Then there exists an automorphism

¢ of n such that

A0 O
Mat(¢*<< ) >)7BO) =10 A O )

0 0 0
where 0 < .
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We determine now all the homomorphisms. Let £ : n — n be an homomorphism. Then &

preserves [n,n] and hence
§(X1) = an Xy + BiXo + X3, §(X2) = Xy + (o Xo +70 X3 and  §(X3) =X,
Then £ is an homomorphism if and only if

Y= 1P — azfh
Then, the set of homomorphisms of n is

a1 Qo 0
H(n) = Bi B2 0 o, 0, B1, B2, 71,72 €R,
T2 aife — b

1.7.3 The solvable Lie group Evo(2)

We consider the 3-dimensional unimodular Lie group Fy(2) = R? x SO(2,R) and we denote by
g = R? x s50(2,R) its Lie algebra. The Lie algebra g has a basis By = (X1, X3, X3) such that

[Xl,XQ] = 0, [Xg,Xl] = X2 and [Xg,XQ} = _Xl-
The following result will be useful later.

Theorem 1.7.3 ([7]). Let (, ) be a scalar product on g. Then there exists an automorphism
¢ of g such that

100

Mat(¢"({, )):Bo) = |0 p 0|,
0 0 v

where 0 < u <1 and v > 0.

We determine now all the homomorphisms. Let ¢ : ¢ — g be an homomorphism. Then &

preserves [g, g] and hence

E(X1) = X+ 51Xy, £(Xs) = Xy + (o Xy and  £(X3) = az Xy + F35X5 +7Xs.
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Then £ is an homomorphism if and only if

;

o — P2 =0,
Yar — Py =0,
g + 1y =0,
(Y2 + 1 = 0.

We can deduce easily that the set of homomorphisms of g is

a —f a a [ a

00
H(g): 0 O ,a,b,Of?/B”YGR,’Y#l
00

2 o 9
)
i)
|
o
o

1.7.4  The solvable Lie group Sol

We consider the 3-dimensional unimodular Lie group Sol and we denote by sol = R? x R its
Lie algebra. The Lie algebra sol has a basis By = (X1, X2, X3) such that

[Xl,XQ] = 0, [Xg,Xl] = X1 and [Xg,XQ} = —XQ.
The following result will be useful later.

Theorem 1.7.4 ([7]). Let (, ) be a scalar product on sol. Then there exist two automorphisms
01 and ¢y of sol such that

10
Mat(¢1((, )),Bo) = | 0 :
0 0 v
and
1 0
Mat(¢3((, )):Bo)= |1 p 0],
0 0 v

where > 1 and v > 0.

We determine now all the homomorphisms. Let £ : sol — sol be an homomorphism. Then

¢ preserves [sol, sol] and hence
§(X1) = arXi + BiXoe, {(X2) = ap Xy + BoXo and  {(X3) = az Xy + B3X5 + 71X
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Then £ is an homomorphism if and only if

We can deduce easily that the set of homomorphisms of sol is

0 0 a a 0 a 0 8 a
H(so) =< (0o 0 b|,]0 B8 b|,|a 0 b |,abaB,7yeERA#1
00 v 00 1 00 —1

1.7.5 The simple Lie group ]SS/L(Q,R)

We consider the 3-dimensional unimodular Lie group SL(2,R) and we denote by si(2,R) its Lie
algebra. The Lie algebra sl(2,R) has a basis By = (X7, X5, X3) such that

(X1, Xo] = 2X3, [X3,X4] =2Xy and  [X3, Xo] = 2X;.
The following result will be useful later.

Theorem 1.7.5 ([7]). Let (, ) be a scalar product on sl(2,R). Then there exists an automor-
phism ¢ of sl(2,R) such that

A
Mat(¢*(< ) >)vBO) - 0
0

o T o
R O O

where 0 < v < pu and X > 0.

1.7.6  The simple Lie group SU(2)

We consider the 3-dimensional unimodular Lie group SU(2) and we denote by su(2) its Lie
algebra. The Lie algebra su(2) has a basis By = (X7, Xo, X3) such that

[X17X2] = X37 [X37X1] - X2 and [X37X2] = _Xl'
The following result will be useful later.
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Theorem 1.7.6 ([7]). Let (, ) be a scalar product on su(2). Then there exists an automorphism

¢ of su(2) such that

o T O

A
Mat(¢™((, )):Bo) = | 0
0

where 0 < v < pu < A\

33



Chapter 2

Harmonic and biharmonic homomorphisms

between Riemannian Lie groups

Let ¢ : (M,g) — (N,h) be a smooth map between two Riemannian manifolds with m =
dim M and n = dim N. We denote by V¥ and V¥ the Levi-Civita connexions associated
respectively to g and h and by T¢N the vector bundle over M pull-back of TN by ¢. It is an
Euclidean vector bundle and the tangent map of ¢ is a bundle homomorphism d¢ : TM —
T?N. Moreover, T®N carries a connexion V? pull-back of V¥ by ¢ and there is a connexion
on the vector bundle End(T M, T?N) given by

(VxA)(Y) = VYAY) - A(VYY), XY eD(TM),AecT (End(TM,T*N)).

The map ¢ is called harmonic if it is a critical point of the energy F(¢) = % Joy 1dévy. The
corresponding Euler-Lagrange equation for the energy is given by the vanishing of the tension
field

m

7(¢) = tr,Vdg = Y (Vp,do)(E), (2.1)

i=1

where (FE;)™, is a local frame of orthonormal vector fields. Note that 7(¢) € ['(T?N). The
map ¢ is called biharmonic if it is a critical point of the bienergy of ¢ defined by Fs(¢) =
3 f 7@ )|?vy. The corresponding Euler-Lagrange equation for the bienergy is given by the

vanishing of the bitension field

7a(9) = —try(V?)?, 7(¢)—tr, RN (7(0), do( . ) ==Y (V)% 57(8) + BN (1(0), dd(E:))do(Ey))

=1
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(2.2)

where (E;)1", is a local frame of orthonormal vector fields, (V9)% , = V4 VY. — V2, . and RV

vy
is the curvature of V¥ given by

RY(X,Y) = VRVY = VyVE — Vi

2.1 General properties and first examples

Let (G, g) be a Riemannian Lie group, i.e., a Lie group endowed with a left invariant Riemannian
metric. If g = T.G is its Lie algebra and (, ); = g(e) then there exists a unique bilinear map

A :gxg—> g called the Levi-Civita product associated to (g, (, )4) given by the formula:
2 Ay, )y = ([, v]%, whg + {[10,u]%, g + ([, 0], uhy 23)
A is entirely determined by the following properties:
1. for any u,v € g, A,v — Ayu = [u, v]",
2. for any u,v,w € g, (A0, w),; + (v, Ayw)y = 0.

If we denote by u’ the left invariant vector field on G associated to u € g then the Levi-Civita
connection associated to (G, g) satisfies V0! = (A,v)". The couple (g, (, )4) defines a vector

say U® € g by
(U?,v)y = tr(ad,), foranywv € g. (2.4)

One can deduce easily from (2.3) that, for any orthonormal basis (e;)!; of g,

Ut =Y A.e;. (2.5)
=1

Note that g is unimodular if and only if U® = 0.
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In the following, we give (G,g) and (H,h) two Riemannian Lie groups of respective Lie
algebras g and b. Let (, ) = g. and (, )y = he. Let V& and V7 be the Levi-Civita connections on
(G, g) and (H, h) and let A and B denote the Levi Civita products respectively on the Euclidean
Lie algebras (g, (,)y) and (b, (,)s). Let ¢ : (G,g) — (H,h) be a Lie group homomorphism
between two Riemannian Lie groups. Let £ : g — b The differential of ¢ at e, it is a Lie

algebra homomorphism. There is a left action of G on I'(T?H) given by
(a.X)(b) = TyapyLo@-1X (ab), a,b€ G, X € I(T?H).

A section X of T?H is called left invariant if, for any a € G, a.X = X. For any left invariant
section X of T?H, we have for any a € G, X(a) = (X(e))*(¢(a)). Thus the space of left
invariant sections is isomorphic to the Lie algebra h. Since ¢ is a homomorphism of Lie groups
and g and h are left invariant, one can see that 7(¢) and 75(¢) are left invariant and hence ¢

is harmonic (resp. biharmonic) iff 7(¢)(e) = 0 (resp. T2(¢)(e) = 0).

Remark 6. The map h — R given by u —— tr(£* o ad, o &) defines a linear form on by, then
there exists US € b such that for all u € b:

(U, u)y = tr(€" o ad, 0 €)
Now, one can see that

7(€) == 7(¢)(e) = Us = £(UY),
n 2.6
72(€) = 72(0)(€e) = = Y _ (Been Be(en (&) + K™ (1(£). £(€0))é(€4)) + BewmyT(€), 20

=1

where B is the Levi-Civita product associated to (b, (, )y),we have

Ug = Z Bg(ei)g(ei% (27)
i=1
(e;)™, is an orthonormal basis of g and K* is the curvature of B given by K (u,v) = [B,, B,|—
Biy,s- So we get the following proposition.

Proposition 2.1.1. Let ¢ : G — H be an homomorphism between two Riemannian Lie
groups. Then ¢ is harmonic (resp. biharmonic) iff 7(§) = 0 (resp. 72(§) =0), where £ : g — b
is the differential of ¢ at e.
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Proposition 2.1.2. Let ¢ : (G,g) — (H,h) be an homomorphism between two Riemannian
Lie groups where H is abelian. Then ¢ is biharmonic and it is harmonic when g is unimodular.

In particular, any character X : G — R is biharmonic and it is harmonic when g is unimodular

Proof. Since the Lie group H is abelian, then the Lie algebra b is abelian then we have [u, v]? = 0
for all u,v € h. Thus:

2(Byv,w)" = ([u,v],w)" + {[w, v],u)? + ([w, u], v)"

Then B = 0. The formula of the fields of bi-tension given in (2.6) gives that m5(£) = 0 then ¢
is biharmonic. If we suppose that g is unimodular then tr(ad?) = 0 for all u € g then we have
U® = 0. Since B = 0 then U® = 0. The formula of the fields of tension given in the (2.6) gives
that 7(£) = 0 then ¢ is harmonic. O

Lemma 2.1.1. For all u € b we have the formula:

(r2(€), uhy = tr(€" 0 (ady + ady) 0 adye) 0 €) = ([u, T(€)]y, 7())y — ([7(E), Usly, )y
Lemma 2.1.2. For allu € K(h), (U%,u)y = 0. In other words U¢ € K(h)*

Proposition 2.1.3. Let ¢ : G — H be an homomorphism between two Riemannian Lie
groups. Then:
(i) If the metric on G is bi-invariant and ¢ is a submersion then ¢ is harmonic.

(i) If the metric on H is bi-invariant then ¢ is biharmonic, it is harmonic when g is unimodular.

Proof. For the point (i), since the metric g of G is bi-invariant then ad, is skew-symmetric with

respect to (, )y for all u € g we have:
(Ayu,v)g = ([u,v],u)y = (adyv, u)g = —(v, ad,u)y = 0.

Thus A,u = 0 for all u € g and in particular U® = 0. On the other hand let v € B, since ¢ is a
submersion then £ : g — b is an homomorphism of Lie algebras surjective, then exists u € g
such that v = £(u) and ad, 0 § = adeq) © § = £ o ad,,, which gives that:

(US, v)y = tr(€" o (ady) 0 &) = tr(§™ 0 £ o (ad,))

since ad, is skew-symmetric and £* o £ is symmetric. Thus U¢ = 0, hence 7(&) = 0.

For the point (ii), by lemma 2.1.1 we have for all u € b:

(12(8), u)y = tr(& o (ady + ady,) o adrgy 0 &) — ([u, 7(&)]y, 7(€))y — ([T(£), ULy, u)y
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The metric on H is bi-invariant then K (h) = b and hence, according to Lemma 2.1.2, U = 0.

And we have
([u, 7]y, 7(E))y = —(adryu, T(§))y = (adr)T(£),u)y =0

Thus 75(¢) = 0, hence ¢ is biharmonic. If g is unimodular, then U? = 0 and as U¢ = 0 we
conclude that 7(§) = 0, thus ¢ is harmonic. O

Example 22. Let (G, g) be a Riemannian Lie group endowed with a bi-invariant metric g. Let
N be a closed subgroup in G, then G/N has a unique Lie group structure such that the canonical
projection ™ : G — G/N is a submersion. By applying proposition (2.1.3), we obtain that
for any left invariant metric h on G/N, the canonical projection w : (G,g9) — (G/N,h) is

harmonic.

Example 23. Let G be a compact Lie group and p : G — GL(V,R) a finite representation of
G. Then there exists a definite positive product {,) on V which is G-invariant, thus p : G —»
SOV, (,)). Now SO(V,(,)) has a bi-invariant Riemannian metric h and hence for any left
invariant Riemannian metric g on G, p: (G,g) — (SO(V, (,)), h) is harmonic.

2.2 Harmonic automorphisms of a Riemannian Lie group
In this section, we denote by H(g) the set of a € G such that ¢, is harmonic, i.e. that:
H(g) ={a € G,7(Ad,) = 0}.

Note that H(g) is not in general a subgroup of G since the computations of two harmonic

automorphisms is not necessarily harmonic.
Remark 7. 1. We have all isometry is harmonic then I(g) C H(g).
2. For all a € Z(G) we have ¢, = Idg this gives in particular that Z(G) C I(g) C H(g).

3. Let v, : G — G be automorphisms of Riemannian Lie groups. We assume that ¢ is

harmonic and 1 is an isometry. Then p o1 and 1 o are harmonics.

Proposition 2.2.1. The set H(g) is stable by the actions to the right and to the left of the
group 1(g).

As a consequence, we obtain that the quotient H(g)/I(g) is defined.
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Lemma 2.2.1. If G is unimodular, then I(g) is an open subset of H(g). In particular, the
quotient space H(qg)/I(g) is discrete.

Corollary 2.2.1. If G is compact, then H(g)/I(g) is finite.

Theorem 2.2.1 ([3]). Let (G, g) be a connected Riemannian Lie group such that H(g) = G.

Then the Riemannian metric g is bi-invariant.

Theorem 2.2.2 ([3]). If G is a connected Lie group which is abelian or 2-step nilpotent then
H(g) = I(9) = Z(G).

2.2.1 The harmonic cone of left invariant Riemannian metric

Now, we consider the following problem: Let (G, g) Riemannian Lie group, we want to deter-
mine all the pairs (¢, h) such that ¢ : (G, g) — (G, h) is harmonic where h is a left-invariant

metric on G and ¢ is an automorphism of the Lie group G.

Proposition 2.2.2. ¢ : (G,g) — (G, h) is harmonic if and only if Idg : (G,g) — (G, ¢*h)

1s harmonic

Proof. 1t is clear that ¢ : (G,¢*h) — (G, h) is an isometry, and we have ¢ = ¢ o Idg. We
then conclude from the point 3 in remark 7 the automorphism ¢ : (G, g) — (G, h) is harmonic
if and only if Idg : (G, g9) — (G, ¢*h) is harmonic. O

Let denote by C'H(g) the set of left invariant metrics h € M!(G) such that Idg : (G, g) —
(G,h) is harmonic. The solution of the problem is equivalent to the determination of the
group Aut(G) and the set C'H(g) of the left invariant Riemannian metric h on G such that
Idg : (G,g9) — (G, h) is harmonic.

Proposition 2.2.3. Let (G, g) be a Riemannian Lie group. Then h € CH(g) if and only if,
for any u € g,

tr(J o ad,) = tr(ady,),

where J : g — @ is a positive definite symmetric endomorphism given by h.(u,v) = g.(Ju,v)

for any u,v € g.
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Proof. Let g. = (,)1, he = (,)2, A the Levi-Civita product of (g, (,)1) and B the Levi-Civita
product of (g, (,)1) . We have, for any u € g, and for any orthonormal basis (e;)!; of (,)1:

(T(Idg),u)2 = 321 (Bei€i,u)2 — 51 (Ae ei, u)
= Z?ﬂ([“a ei]ei, >2 - Z?:1<Aeiei7 JU>1
=i el e = 5 ([Jus e, eih
= tr(J oad,) — tr(ady,).

Corollary 2.2.2. C'H(g) is a convex cone which contains g.

Definition 2.2.1. We call CH(g) the harmonic cone of g and dimCH/ g) the harmonic di-
mension of g, where dimCH (g) is the dimension of the subspace spanned by CH(g).

Proposition 2.2.4. Let (G, g) be a Riemannian Lie group. Then CH(g) = MYG) if and only

if g 1s bi-invariant.

Proof. Suppose that g is bi-invariant, Proposition (2.1.3) gives that for any left-invariant metric
h, Idg : (G,g9) — (G,h) is harmonic and we have that CH(g) = MY G). Conversely, we
assume that CH(g) = M'(G). Then for all a € G, c’(g) € CH(g) what is equivalent to saying
according to proposition (2.2.2) that Ad, : (G,g) — (G, ¢g) and consequently a € H(g). Thus
H(g) = G and Theorem (2.2.1) then gives that g is bi-invariant. O

Theorem 2.2.3. Let (G, g) be a unimodular Riemannian Lie group. Then

nm = L ik (o)

dimCH (g) =
, where n is the dimension of the Lie group G.
Proof. The scalar product (,), of g induces a scalar product (,) of gl(g) given by:
(A, B) = tr(A*B)

Let define the linear map ¢ : g — gl(g) given by u — ad,, +ad},. 1t is clear that kery = K(g)
and we have ¢ induces an injective linear map 1 : g/K(g) — gl(g) such that ¢ om = ¢ with
7. g — g/K(g) the canonical projection. We give J € Sym™(g) then:

tr(J* o (ad, + ad})) = tr(J* o ad,) + tr(J* o ad}) = tr(J o ad,) + tr(ad, o J) = 2tr(J o ad,,).
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Since G is unimodular then tr(ady,) = 0 and from proposition (2.2.3), we get that:
CH(g) ={J € Sym™(g),tr(Joad,) =0 for all ue€ g}
This formula gives that J € CH(g) if and only if (J, ad, + ad},) = 0, thus:

CH(g) = Sym™(g) N (v (g/K(9)))*

where (¢(g/K(g)))* denotes the orthogonal of (¢)(g/K(g))) for the scalar product (,). On
the other hand, since Sym™(g) is an open of Sym(g), then C'H(g) is an open of vector space
Sym(g) N (¢(g/K(g)))* then CH(g) spanned this space.

dim CH(g) = dim Sym(g) N (¢(g/K (9)))*
since 1(g/ K (g)) C Sym(g), then gl(g) = Sym(g) + (¥ (g/K(g)))*. Thus
dim Sym(g)N(¢(g/K(9)))" = dim Sym(g)+dim(v(g/K(g)))"—dim gl(g) = dim Sym(g)+dim(¢(g/K(g)))

Since ® is injective, we get that dim(¢(g/K(g))) = dim(g/K (g)) = dim g — dim K (g). hence

n(n —1)

dimCH(g) = )

+ dim K (g)

2.3 Riemannian immersions between Riemannian Lie groups

Consider a homomorphism € : (g, (,)q) — (b, (,)y) and we assume that & is an isometry. Then
¢ is injective and we put by := £(g), it is clear that by is a Lie subalgebra of . The scalar

product (, ), induces by restriction a scalar product (, ), on Lie algebra bhy. Then write:

h=ho® b

Then any element w € b decomposes in a unique way in the form w = w® + w* where

w’ € hy and wt € bhy. In particular we obtain that for all u,v € by
B, = (Bv)" + (Buw)*

Proposition 2.3.1. The Levi-Civita product on (ho, (,)s,) is given by the bilinear map B :
Bo X Bo — o, (u,v) — (B,v)° And, we have for all u,v € g:

Be&(v) = §(Aw)
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The map B+ : by x by — hg given by (u,v) — (B,v)* is symmetric bilinear and the

vector H®) = Zfil Bef_ei does not depend on the orthonormal basis (e;)1<;<m chosen on by.

Definition 2.3.1. The vector H® s called the mean curvature vector of £. It is an element

of £(g)*

Proposition 2.3.2. The mean curvature vector H¢® and the tension field 7(£) are equal.

Proof. Let (e;)1<i<m be a orthonormal basis of (g, (,)g, so it is clear that the homomorphism
€:(g,(,)g) — (bo, (, )p,) is an isomorphism of Euclidean spaces, and we have ({(e;)),1 <i <m

is an orthonormal basis of (ho, (, )s,). By the proposition 2.3.1 we have:

HE® = Z Bé(ei)f(ez‘) = Z Bg(ei)f(ez‘) - B&ei)&(ei) = Z B&(ei)é(ei) —§(Agei) = 7(6)
i=1 i=1 i=1
O

Proposition 2.3.3. The homomorphism ¢ : (G,g9) — (H, h) is a Riemannian immersion if
and only if £ : (g, (,)q) — (b, (,)py) is an isometry.

Corollary 2.3.1. Let ¢ : G — H be a homomorphism between two Riemannian Lie groups

which is also a Riemannian immersion. Then ¢ is harmonic if and only if H&® = 0.

Proposition 2.3.4. Let ¢ : G — H be a homomorphism between two Riemannian Lie groups.
Suppose that ¢ is a Riemannian immersion, both g and § are unimodular and dim H = dim G+

1. Then ¢ s harmonic.

Proof. Since dimh = dimg+ 1 and £ : g — b is injective, then dim &(g)* = 1 hence £(g)* =
vect(f), and we have H¢® € £(g)* then we get

H'® = qaf acRr

Choose an orthonormal basis (ej, ..., e,) of g and complete by f to get an orthonormal basis
(&(e1),...,&(en), f) of h. On the other hand we have g and b are unimodular then U9 = 0 and
Ub=0.

U'=Byf+ > Beepble:) = Bpf +U*
i=1
then we get U¢ = —By f, then 7(§) = —B;f. Thus

(1), 7))y = (=Bsf,af )y = —a(Bsf, fly =0

Then ¢ is harmonic. [
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Proposition 2.3.5. Let p : G — H be a homomorphism between two Riemannian Lie groups.
Suppose that ¢ is a Riemannian immersion, [g, 9] = @, any derivation of g is inner and &(g) is

an ideal of . Then ¢ is harmonic.

Proof. Since &(g) is an ideal of § we obtain that the restriction ad, of ad, on &(g) defines a
derivation of £(g) for all u € h. On the other hand, ¢ : g — £(g) is an isomorphism of Lie
algebras and since any derivation of g is inner then any derivation of £(g) is inner. Then denote
by B the Levi-Civita product on (£(g), {, )y) and fix an orthonormal basis {ey, ..., e, } on g, we
get that {£(e1),...,&(e,)} is an orthonormal basis of £(g). Thus for all u € £(g)* , we have:

n n n

(HYO )y = Y (Beenble)=Bepélen), u)y = Y (Beepbler), u)y = Y _(aduéler) &(en))y = tr(ady).
i=1 i=1 i=1

Since [g,g] = g then [£(g),&(g)] = &£(g), we have ad, is an inner derivation of £(g), then

ad, = adp, ., With uy,us € &(g) and therefore trad, = 0 for all u € &(g)*. We then conclude

that H¢® =0, Corollary (2.3.1) gives that this is equivalent to saying that ¢ is harmonic. [J

2.4 Harmonic and Biharmonic submersions between Rie-

mannian Lie groups

Let ¢ : (G,g) — (H,h) be a homomorphism of Riemannian Lie groups. Recall that ¢ is a

submersion if T, is surjective for all a € G.

Proposition 2.4.1. The homomorphism ¢ : (G,g9) — (H,h) is a submersion if and only if

the homomorphism & : g — b is surjective.

Proof. 1t is clear by the definition of submersion that if ¢ is a submersion, then £ is surjective.
Conversely, we suppose that £ : g — b is surjective, it is clear that for all a € G we have
po L, = Ly o @, passaging to the differential that T, 0o T, L, = T.L,q) o §. Thus Typ is

surjective for all @ € GG, hence ¢ is a submersion. O

In the following we suppose that ¢(G,g) — (H,h) is a submersion. Let Gy = ker ¢ and
go = ker¢. Since Gy is a normal subgroup in G then G/G is a Lie group and ¢ induces a
homomorphism of Lie groups ¢ : G/Gy — H. Moreover, gq is an ideal of g and g/go has a
Lie algebra structure such that the canonical projection 7w : g — g/go is a homomorphism of

Lie algebras. Finally, we put & := T.@.
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Proposition 2.4.2. Lie algebras Lie(G/Gy) and g/go are isomorphic

Proof. The canonical projection p : G — G//Gy is a homomorphism of Lie groups, we obtain
a homomorphism of Lie algebras ¢ : g — Lie(G/Gy) by setting ¢ := T,p. On the other hand
we have ker ¢ = go, since if v € gg then exp(tv) € Gy for all ¢t € R then:

exp(tp(v)) = poexp(tv) = e

By taking the derivative at ¢ = 0 of the previous formula we get that ¢(v) = 0 then v € ker ¢.
Conversely, if v € ker¢ then ¢(v) = 0 hence exp(t¢(v)) = p o exp(tv) = e for all t € R.
That is to say that exp(tv) € Gy for all ¢ € R then v € go. In summary we have ker ¢ = go
then ¢ induces an injective homomorphism of Lie algebras ¢ : g/go — Lie(G/Gy). We have
dim g/go = dim Lie(G/Gy). Thus ¢ is an isomorphism of Lie algebras. O

Denoted by € : g/go — b then we have:
Proposition 2.4.3. 1. The homomorphism of Lie algebras & factors in the form & = £ om.
2. The linear map & : g/go — b is an isomorphism of Lie algebras.

We denote by 7 : g/go — gy the inverse of , the restriction of 7 to gg- . Thus 7*(, ), is an

Euclidean product on g/go which defines a left invariant Riemannian metric go on G/Gy.
Proposition 2.4.4. With the notations above, we have
7(€) = 7() — E(H*9),

where € : (g/80,7*(,)g) — (B, (,)y) H S is the mean curvature vector of the inclusion of ker &

in (9, )g)-

Proof. We have g = go @ ga. Choose an orthonormal basis (f;)}_, of gy and an orthonormal
basis (e;)Z, of g5. If A and B denote the Levi-Civita products of g and b respectively, we

have:

7(6) = D_ Beeotlen) = D_&(Anes) = 3 &(Anfi)

Let A° be the Levi-Civita product of go , we get

i=1 i=1

E(HS) =¢ (Z(Afifi>L) = Zf(Afifv: — AL )
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On the other hand, the canonical projection my. : (95 (,)a) — (8/80,7(,)q) is an isometry
then (m(e;))?_, is an orthonormal basis of (g/go,7*(, )4). Since £ = £ o, we get that:

= Beepble) =Y Ben(ené(m(er)) = U
=1 1=1
Thus
7(€) <ZA ez> E(H®

To finish, it suffices to show that £(U%%) = ¢ (3°9_| A,e;), but this comes from the fact that
T(Aw) = Arym(v) for all u,v € gg because T, L (go (s )e) — (8/80,7%(,)q) is an isometry
with A is the Levi Civita product on (g/go, r*(, >g) so:

E(U/m) — ngl () ZSowAelez Y (e
=1

]

Corollary 2.4.1. Let 75(§) be the bitension field of € : (g/80,7*(,)s) — (b, (,)s). Then we

have:

n

72(6) = 72(8) = D (Beteo Beteo €(H") + Ky (€(H™), £(e))E(er)) — Beqwm ().

i=1

where (e;)"_,) is an orthonormal basis of (g, (,)).

Proposition 2.4.5. Let ¢ : (G,g) — (H,h) be a submersion between two Riemannian Lie
groups. Then:

(i) If ker & is minimal then ¢ is harmonic (resp. biharmonic) if and only if @ is harmonic
(resp. biharmonic).

(i) If @ is harmonic then ¢ is harmonic if and only if ker £ is minimal.

Let ¢ : (G,g) — (H, h) be a submersion between two connected Riemannian Lie groups.
Then we have ¢ : G/Gy — H is an isomorphism. If we endow G/G( with the left invariant
metric ¢*h we obtain then that ¢ : (G/Gg,¢*h) — (H,h) is an isometry. So ¢ is harmonic
(resp. biharmonic) if and only if p : (G,g9) — (G/Go, ¢*h) is harmonic (resp. biharmonic).
So the study of harmonic or biharmonic submersion between two connected Riemannian Lie
groups is equivalent to the study of the projections p : (G, g) — (G/Go, h) where (G, g) is a

connected Lie group, Gy is a normal subgroup and A is left invariant Riemannian metric on
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G/Gy. To build harmonic or biharmonic such projections, let first understand how G can be
constructed from G/Gy and Gy. Let Gy is a normal subgroup of G, and p : (G, g) — (H,h)
where H = G/Gy, denote by 7 : g — g/go the natural projection and r : g/g — gi the

inverse of the restriction of 7 to gi, we have 7 = T,p. Denoted by (,)™ = r*(, ),.
Corollary 2.4.2. In the previous notations, we have the formula:

7(m) = 7(Idy) — m(H™)
where T(Idy) is the tension field of the map Idy : (h, {,)™) — (b, {(,)s)

Corollary 2.4.3. In the previous notations, we have the formula:
To(m) = o(Idy) +Z (e Br(enT(H®) + Ky (m(H®), 7(e;))m(e;)) — Brwoyw(H®).
where (e;)i) is an orthonormal basis of (g, (,)) and m2(Idy) is the bitension field of the map

[dh . (h> <’>7T) — (b> <>>h)'

Denote for all u € g, a~du the restriction of ad, to go, since go is an ideal of g then a~du €

Der(go). Then define p : h — Der(gop) and w : h x h — go given by:

p(v) = GNdr(v) and  w(vy,v2) = [r(v1),7(v2)]g — 7([v1, vap)
Proposition 2.4.6. In the previous notations, we have:

1. For all vy,vy € h we have the formula:

p([v1, valy) = [p(v1), p(v2)] — adyy(vy v)-

2. Let dyw(vy,v9,v3) = $(p(v1)(w(ve,v3)) — w([v1, v2]y, v3)), alors dyw = 0.

Proposition 2.4.7 ([3]). For all v € h we have

(x(H®), 0)" = trp(v)

Proposition 2.4.8 ([3]). Let G be a connected Riemannian Lie group and Gy a semisimple
normal subgroup of G. Then Gy — G is minimal and p : G — G/Gq is harmonic when
G /Gy is endowed with the quotient metric go. Moreover, for any left invariant Riemannian
metric h on G/Gy, p : (G,g9) — (G/Go, h) is harmonic (resp. biharmonic) if and only if
Idcc, : (G/Go, 90) — (G/Go, h) is harmonic (resp. biharmonic).
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2.5 When harmonicity and biharmonicity are equivalent

We give now, the study of situations where harmonicity and bi-harmonicity are equivalent in

the context of Riemannian Lie groups.

Theorem 2.5.1. Let ¢ : G — H be a homomorphism between two Riemannian Lie groups
such that the sectional curvature of (H,h) is non-positive and g is unimodular. Then ¢ is

harmonic if and only if it is btharmonic.

Proof. Let (e;)7—; be an orthonormal basis of (g, (,),), by the formula (2.6) we have

n

(72(6), 7))y = = D _((Beteny Be(en7(€) T(E))p + (K (7€), £(e2)&(€0), 7(€))o +(Bewny 7(€) 7€)

i=1

= Z((Baem(f)’ Be(e)T(€))y — (K" (€(eq), 7(€))& (), T(€))y

If ¢ is biharmonic then 75(£) = 0, then we have:

n n

> (Beteo(€): Beeo(€)y = D (K (€(ea), 7(€))é(es), m(€))y

i=1 1=1
Since the sectional curvature of (H,h) is negative then (K"(&(e;), 7(€))E(e;s), 7(€))y < 0 for all
i =1,n. Thus > ((BeenT (&), Been)T(€))s = 0, hence Bee)7(§) =0 forall 1 <i <n. We
have g is unimodular then U? = 0, then 7(¢) = US.We have

n n

(7(€), 7))y = (US, () = D (Be(en€(es), =~ > {€(e), Beep(€)) = 0

i=1 i=1
Thus 7(€¢) = 0, hence ¢ is harmonic. O
Corollary 2.5.1. Let ¢ : G — H be a homomorphism between two Riemannian Lie groups

such that the sectional curvature of (H,h) is non-positive and the sectional curvature of (G, g)

1s non-negative. Then ¢ is harmonic if and only if it is biharmonic.

Proof. This is a consequence of Theorem 2.4.1 and the fact that a Lie group which admits a

left invariant Riemannian metric with non-negative Ricci curvature must be unimodular. [

Other situations where harmonic and bi-harmonic are equivalent are presented by the fol-

lowing theorem proved in a more general sitting by Oniciuc [8] in Propositions 2.2, 2.4, 2.5,
4.3.
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Theorem 2.5.2 ([3]). Let ¢ : G — H be a homomorphism between two Riemannian Lie

groups. In each for the following cases, ¢ is biharmonic if and only if it ©s harmonic:
1. The sectional curvature of (H,h) is non-positive and ¢ is a Riemannian immersion.

2. The sectional curvature of (H,h) is non-positive, ¢ is a Riemannian immersion and
dimH = dimG + 1.

3. The sectional curvature of (H,h) is negative and rank& > 1.
4. The sectional curvature of (H,h) is negative and ¢ is a Riemannian submersion.

Theorem 2.5.3 ([3]). Let ¢ : G — H be a homomorphism between two Riemannian Lie

groups. In the following cases the harmonicity of ¢ and its biharmonicity are equivalent:
1. H 1is 2-step nilpotent and g is unimodular.
2. ¢ 1s a Riemannian submersion and g is unimodular.
3. ¢ 1s a Riemannian submersion, keré is a subalgebra of g and g is unimodular.
4. @ is a Riemannian submersion, kerf is unimodular, dim H = 2 and H is non abelian.

We give now a criteria which will be useful in order to show that an homomorphism is

harmonic if and only if it is biharmonic.

Let € : (g,(, )1) — (b,(, )2) be an homomorphism. We suppose that g is unimodular.

The following formulas was established in Lemma 2.1.1 and remark 6:

(7€), u)e = tr({"oad,0f),
(12(€),u)e = tr(€ o (ad, +ady) o ady ) 0 &) — ([u, 7(€)], 7(£))2,

where £* : h — g and ad] : h — b are given by
(E"u,v)1 = (u,&v)e and (ad;z,y)2 = (ad,y, x)s, x,y,u € h,v € g.
By combining these two formulas, we get
(r2(6), u)2 = tr(&” 0 (ady + ad}) 0 ady(g) 0 &) — tr(&” 0 adju,r(g)) © &).
So if ¢ is biharmonic then 7(§) is solution of the linear system
tr( o (ad, 4+ ady) cadx 0o §) — tr({" oadp,xj0§) =0, u € b. (2.8)
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B =(f1,...,fm) is a basis of h this system is equivalent to

where M&(B) = (mz‘j>1§igj§m and
m;; = tr(€* o (ady, + ad’}i) oady, o £) —tr(£*o adyy, ;) © £).
We call M¢(B) the test matrix of € in the basis (f1,..., fn).

Proposition 2.5.1. If det(M(B)) # 0 then £ is bitharmonic if and only if it is harmonic.

49



Chapter 3

Biharmonic and harmonic homomorphisms

between Riemannian three dimensional

unimodular Lie groups

Thus the study of biharmonic and harmonic homomorphisms between connected and simply-
connected Lie groups reduces to the study of their differential so, through this chapter, we
consider homomorphisms & : (g,(, )1) — (g,(, )2) where g is a Lie algebra and (, ); and

(, )2 are two Euclidean products. We call ¢ harmonic (resp. biharmonic) if 7(£) = 0 (resp.

() = 0).

The classification of biharmonic and harmonic homomorphisms will be done up to a conju-

gation. Two homomorphisms between Euclidean Lie algebras

61:(g><> >%>_>(97<7 >%) and 62:(g><> >%>—>(97<7 >%)

are conjugate if there exists two isometric automorphisms ¢, : (g, ( , )1) — (g,(, )?) and

d2: (g, (, )3) — (g,(, )3) such that & = ¢y 0 & 0 ¢y .

In the following sections, the computation of 7(£) and 75(§) are performed by the software

Maple and all the direct computations as well.
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3.1. HARMONIC AND BIHARMONIC HOMOMORPHISMS ON THE 3-DIMENSIONAL
HEISENBERG LIE GROUP

3.1 Harmonic and biharmonic homomorphisms on the

3-dimensional Heisenberg Lie group
The following result gives a complete classification of harmonic and biharmonic homomorphisms
of n.

Theorem 3.1.1. An homomorphism of n is biharmonic if and only if it is harmonic. Moreover,

it is harmonic if and only if it is conjugate to & : (n,(, )1) — (n,(, )2) where

a1 Qg 0 afs —aaz 0
E=16 B 0 or bBs —basz 0|, (as,f3) # (0,0)
0 0 aifle—agB az B3 0

and Mat({, );,Bg) = Diag(A\;, \;, 1) and \; >0, i =1, 2.

Proof. The first part of the theorem is a consequence of Theorem 2.5.3. On the other hand,

according to Table 1.1, and homomorphism € : (n, (, )1) — (n,(, )2) has, up to a conjugation,

the form
a1 Qo 0
£ = 61 62 0 and < , >z = Dlag()\z, )‘i7 1), >\z > O,Z = 1,2
(6%} 53 alﬁQ - 04251
Then
azfB + B3P asaq + Psan
— X, — X
T(f) Sy 1 W 2
and the second part of the theorem follows. n

3.2 Harmonic and biharmonic homomorphisms on EO(Q)

The situation on eg(2) is different and there exists biharmonic homomorphisms which are
not harmonic. The following two theorems give a complete classification of harmonic and

biharmonic homomorphisms on e(2).

Theorem 3.2.1. An homomorphism of ey(2) is harmonic if and only if it it is conjugate to

1 0 0
€:(e0(2),(, )1) — (e0(2),(, )2) where Mat({, );,Bo) =10 pu; 0 [,0<p <1,1,>0 and
0 0 v;

either
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0 0 «a
1 §: 00 b wlth/}ﬂ%land(a#oub%ofyzoan:l)a((aub)%(ovo)ﬂlbzouvzo)
0 0 v
or (a=b=0)
a —f0 a
2.6=|B a b|land(a=b=0,0a=0),(a=b=0,6=0),(a=b=0,u1=1) or(a=
0 0 1
sz,,uQ:l),
a [ a
3.6=|B —a b | and (a =b=0,a=0),(a=b=0,8=0),a=>0=0,u =
0O 0 -1

1) or(a=b=0,u =1).

Proof. According to Table 1.1, and homomorphism & : (eg(2),(, )1) — (eo(2),(, )2) has, up
to a conjugation, the form Mat((, );,Bo) = Diag(1, u;,v4),i =1,2,0 < p; < 1,1; > 0 and

a a —f a a [ a
£ = blAPALE=]8 a b| o E=[8 —a
0 v 0 0 1 0 0 -1
a
o (= b | with 2 # 1. We have
0 0 v
b b -1
T(f):—vm X1+ e X2+MX3
1% Haly alh

and 7(£) = 0 if and only if

(a#0,b#0,v=0,u2=1), ((a,b) # (0,0),ab=0,7v=0) or (a=0b=0).

a —0 a
o{=|8 a b|. Wehave
0 0 1
—1 _
) = M2y O, e DlaBn(n = 1) +abn)
g M2l JI22)
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and 7(§) = 0 if and only if

a B a
o{= |5 —a b |. Wehave
0 0 -1
-1 .
7'5 :M_2bX1_ a X2+ (:u2 )(OZBI/1<ILL1 1)—|—ab,u1)X3
" M2l Hi1Vo
and 7(£) = 0 if and only if
(a=b=0,a0=0),(a=b=0,8=0),(a=b=0,pu=1)or (a=b=0,pus = 1)

]

Theorem 3.2.2. An homomorphism of ey(2) is biharmonic not harmonic if and only if it is

1 0 O
congugate to & : (eo(2), (, )1) — (eo(2),(, )2) where Mat({, )i,Bo) = [0 p; 0 |,0<p; <
0 0 v;
1,v; > 0 and either:
0 0 a
1.£€=10 0 b| and (a®> =b*ab#£0),
0 0 O
a —0 a
2 (A0 #1),6= |8 a bl anda=b=0,a2=pa8#0) or
0 0 1
2 20,0 — 1)2
<a=ebu2\/m,b7é0,a2:ﬁ2:\/m(u2 V2+a2<'u2 )),ﬁzeme:i—l.)
pa vy (p2 —1)7 (1 — pu1)
a B a
3 ( #0,ue#1), &= —a b | and (a=b=0,a>= % aB #0) or
0o 0 -1

2 20, _ 1)2
<a:ebu2\/,u_1,b7é0,a2:62: Vi (i y2+a2(,u2 ) ),ﬁ:ea,e::l:l).
pa v (2 — 1)7 (1 — )
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Proof. As in the proof of Theorem 3.2.1, according to Table 1.1, and homomorphism £ :
(e0(2),( , )1) — (eo(2),{ , )2) has, up to a conjugation, the form Mat({ , );;By) =
Diag(1, p;,v3),i =1,2,0 < p; < 1,1, > 0 and

a a —0 a a [ a
= bl PALE=]8 o b| o £={8 —a b
~y 0 0 1 0 0 -1
0 a
e{=10 b | with 4% # 1. We have

o
2

by (Pve + @) po® — 2 a*ps + a?) v a (b (e — 1)° + 721s)

m(§) = — 3 X1+ 53 Xo
2 2 oy 2 VIR 2 | 72 2 Rt
+((’Y vt a =)+ (Ve —a+ ) ety )b —1)a
V12022 g o
If v =0 then
(a —b) (a+b) (12 — 1) ba
= X
72(€) 2y
and ¢ is biharmonic not harmonic if and only if a? = b% and ab # 0.
If v# 0 and b # 0 and 75(§) = 0 then
(’)/QVQ + az) ,LLQQ -2 CLQ,MQ + Cl2 = 0.
The discriminant of this equation on py is A = —4a?*y%*v, < 0 and this equation has no

solution. Tt is also clear that if v # 0 and a # 0 then 75(§) # 0. In conclusion ¢ is biharmonic

not harmonic if and only if

(7:0,(122172,ab7é0).
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a —fp a
o{=1|3 «a b]|. Wehave
0 0 1
( —_— J—
(6 = by 0y, e DlaBnln =D +ab)
g Ha2l1 22

(&) = A1 X7 + A Xy + A3 X,
(bpy (p — 1)?a®+ Bav (ue— 1) (u — 1) a+ bp f122v2)

22
A, — (v (= 1) B+ abp) bug® — 2 (v (1 — 1) B+ abu) bus® + (v (1 — 1) B+ abun) by + apvs)
5 =

V12 122 va iy
102 e Ay = paBi® (1 — 1)% (e — 1)* o + poviab (2 — 1) (1 — 1) o

Alz—

Y

+paf vy (g — 1) (—52M1V1 +a?u; — by + 52V1) (o — 1)2 o+ abpy (—52M1M22V1 + pipo?vy + a? g p?

L —b2,u1,u22 + /32M1M2V1 + /32M22V1 + 1oV — a2M1M2 + bZMM — 52#2% + i) (pe — 1)

and the test matrix is given by

M2 0 _a(p2—1)
v 1
1) (a2—82) (1 —
Me(Bo) = 0 o = and  det(Me(B)) = 222 1)(111%5 )1
_ p2a b (H2—1)<((062—52)V1+a2—b2)111+u1(—O¢2+52))
V1 V1 Hivi

Note first that if gy = 1 then 7(§) = —%Xl + #Xg and £ is biharmonic if and only if it is
harmonic. If p; =1 then

(b (2 — 1)2 a* + bM22V2)

b2 3 2 b2 2 b2
A =- ; and 4, — (Paps’ = 2¥aus® + Baps + avs)

2, 2
V1712 S )

and one can see easily A; = Ay = 0 if and only if a = b = 0 and hence £ is biharmonic if and
only if £ is biharmonic.

We suppose now that p; < 1 and ps < 1. So det(M¢(By)) = 0 if and only if a? = 5%
According to Proposition 2.5.1, if o® # 3? then ¢ is biharmonic if and only if it is harmonic.
We have also that if « = § = 0 then 75(£) = 0 if and only if a = b =0

Suppose that o? = 2 and a # 0. If @ = b = 0 then 75(¢) = 0 and ¢ is biharmonic
not harmonic. Suppose (a,b) # 0. Then the rank of M(By) is equal to 2 and its kernel has

dimension one and

v=a(pg—1) X1 —b(pa — 1) paXo + p2X3

95



3.3. HARMONIC AND BIHARMONIC HOMOMORPHISMS ON SOL

is a generator of the kernel of M¢(By). But if £ is biharmonic then 7(£) is in the kernel of
M¢(By) and hence it is a multiple of v. Recall that

b — 1)(ea®y (i — 1) + ab
() S G L (2 — 1) (ea?vy(py — 1) + abpy)

n a1 H1V1V2

X3 and e=+1.

But (v,7(€)) are linearly dependent if and only if

(2 — 1) vopn (=0*ps® + a?)
2%
—b (g — 1)2u26 (u1 — V) via® — apg (VP pg® — 207 ue® + Vs + 1) = 0,

=0,

b (2 — 1)* a? + a®evy (2 — 1)% (11 — 1) @ + b pio®vz = 0.

Since (a, b) # (0,0), this is equivalent to

a® = bps”,
G2 o (D pa(p2 — 1)° + 1) _ b (n2’vy 4 a*(pg — 1)%)
b(pz — 1)* poe (1 — 1) 11 evi (s —1)" (1 — 1) a

and this is equivalent to

CL2 — bQ,uQS)
o2 — b (v + a®(pa — 1)%)

evi(a—1)" (i —1)a

So a = ebus. /112 and we get the desired result.

a B a
The case of E = | B3 —a b | can be treated identically. O
0 0 -1

3.3 Harmonic and biharmonic homomorphisms on Sol

Theorem 3.3.1. An homomorphism of sol is harmonic if and only if it is conjugate to & :

(sol, {(, )1) — (sol, (, )2) where:

1. (, )i =Diag(1,1,1;), i = 1,2 and v; > 0 and either

=&, (a=b=0) or (y=0,a"=V)],[£=6&, (a=b=0,0>= )]
or [£=¢&, (a=0b=0,a%=p%).

56



3.3. HARMONIC AND BIHARMONIC HOMOMORPHISMS ON SOL

1 0 0 1 1 0
2.(,01=101 01],(,)2=1|1 po 0| andv; >0, uz > 1 and either
0 0 141 0 0 )

32
o2
=&, (a=b=a=5=0) or (a:bzo,m:@)]
11 0 1 0 0
S (=1 0,(,)2=[01 0] andv; >0, pu1>1
0 0 mn 0 0 v

CL2
7 =0, 2 ?ﬂ
) or ( =b= 07 aaﬁ) 7& (07 0)7Oé2lj“l = 6%“2)} or
) or ( =b= 07 0576) 7& (Oa O)>Q2N1M2 = 62)} .

The homomorphisms &;,1 = 1..3 are given by

and &3 =

_ o Q2
o QO o
o O ™

0 0 a a 0
=100 bl,.&=1]0 8
0 0 v 0 0



3.3. HARMONIC AND BIHARMONIC HOMOMORPHISMS ON SOL

Proof. We use Table 1.1 to get all the conjugation classes of homomorphisms of sol and for

each one we compute 7(§).

e (), =Diag(1,1,v;),i=1,2 and v; > 0. We have

(&) = 0+ x4 2 X3,
1241 141 Vo1
b (a? — B?) vy + a® — b?

X37

a
T(gg) = ——X1 -+ _X2 +
151 151 Vol
b (—a?+ B*) vy + a® — b?

a
(&) = — X1 — —Xo + Xs.
\ 14 V1 19151
1 0 0 1 1 0
e (., )1i=|01 0],(,)2=1]1 ps 0| andv; >0, us > 1. We have
0 0 1y 0 0
( a+2b)uy +a by +2a+b —b* s + a?
7(51):—(( ) e )7X1+7(u2 )X2Jr potat
(2 — 1) 11 (e — 1)1 Voly
(&) = _(C“F%)MJMLX n bM2+2a+bX N (=62 + ®) 1y —52M2+a2X
’ (/~L2 - 1) n ! (MQ - 1) 141 2 12141 &
(&) = (a+2b)pa+a, ,u2b—|—2a+bX n (—a?ps + %) 1n —b2ﬂz+a2X
( ’ (2 — 1) 11 ! (2 — 1)1y ? Valy -
1 1 0 1 0 0
e (., i=1|1 p 0],(,)2=10 1 0| andw >0, g >1. We have
0 0 0 0 1y
( b 2 _ 2
7(&1) = _ﬂXl + lX2 + 2 X3,
i’ bVI ( 2V2V_1|_ 2 bZ) 62 2 + 52
a a‘v; +a® — — 0B%r; —a
T7(&) = ——X1+—Xo + - Ml_ - X3,
i bV1 ( 2 2 ng 'l)“ 1)BV21 2 b2
a —a v +a” — w1+ pvy —a” +
==X - —X Xs.
\T(&S) 141 ! 141 2 1) (,Uq — 1) 141 3
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3.3. HARMONIC AND BIHARMONIC HOMOMORPHISMS ON SOL

1 1 0 11 0
(. )1i=11 pm O/|,(,)2=11 ppy 0| andv; >0, u; >1. We have
0 0 141 0 0 Vo
( +2b) g + bz +2a+b —b%ps + a?
T(&):_((a Jata)yy v bpt2a+b) | “mta
(2 — 1)1y (e — 1)1y Vol
T(éz):_(a+2b),u2+a 1 b'u2+2a+bX2+(a2yl_b2M2+a2)M1+(_62V1+b2)M2_a’2X3
(12 — 1)1 (2 — 1)1y va (1 — 1) ’
(@a+2b) s+ a bus +2a+b ((—a®vy — %) g + a®) puy + V?ps + B2y — a?
(&) = 1 - Xo + X.
(h2 = 1) vy (k2 — 1) 11 va (= 1)1
One can check that 7(¢;) = 0 are equivalent to the conditions given in the theorem. ]

Theorem 3.3.2. An homomorphism of sol is bitharmonic if and only if it is harmonic.

Proof. As above, we put

0 0 a a 0 a 0 B8 a
=100 b|,&=]10 B b and &= |a 0 b
00 ~ 0 0 1 00 —1

Let & : (sol,( , )1) — (sol,( , )2) an homomorphism. Table 1.1 gives all the possible
conjugation classes of £ and we will show that for each case £ is biharmonic if and only if £ is

harmonic.

e ¢{=¢ and (, ); = Diag(1,1,1;), i = 1,2 and v; > 0. We have

1/2 2 2_b2 —1/2 2 2_b2 b 2
(1/ 7V2+2a )cle_Q( / 7V2-2Fa ) X, 42 2
V119 V1°Vs a7l

(a®> = b*)vg +2a* — 24

. X;.

m(§) = -2

One can see easily that 75(€) = 0 if and only if (a = b = 0) or (v = 0, a? = b?) which, according

to Theorem 3.3.1, is equivalent to £ is harmonic.

e { =& and (, ); =Diag(1,1,14),i=1,2 and v; > 0. We have
a((@® = %) vy +a® —b*+1/21) (a? = BHvi+a>—b*—1/21,)b

72(§) = -2 2 X1 —2 2 Xo
V14Vo s
+2 a*v? = 2842 +4a%Py, — 462B% + 2at — 26 + a’vy — b2V2X
V12I/22 3
We have also
Vl_l 0 —24
" 2_|_/62
o
Mg(Bo) = 0 Vl_l -2 V% and det(Mé(Bo)) =2 y12 .
_a _ b 202142 B2v14+2 a2 +2 b2
141 151 vy
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3.3. HARMONIC AND BIHARMONIC HOMOMORPHISMS ON SOL

According to Proposition 2.5.1, if («, ) # (0,0) then £ is biharmonic if and only if it is
harmonic. If « = f = 0 then £ = & with v = 1 and we can use the arguments used in the

precedent case to conclude.
e ¢{=¢3and (, ); = Diag(1,1,1;), i = 1,2 and v; > 0. We have

a(—2a?v; +2 6%, +2a* — 20 + 1) b(—20a?v; +2P%; +2a* —20% — 1)

m(§) = X1+ 3 Xo
]2 V179
—2a*?2 + 2812 + 4a? By — 40P + 2a* — 264 4 aPry — by
+ 5 X3
V17V
and
Vl_l 0 2 Vil
o2 + B2
Mé‘(Bo) = 0 1/171 2 1% and det(Mg(Bo)) =2 » 25
1
a b 2020142 B2v1 42 a?+2 b2
121 V1 V1
and the situation is similar to the precedent cases.
1 0 0 1 1 0
ei=&Gand (, )1=101 01,(, )= 1 po 0| andvy; >0, pp > 1.
0 0 141 0 0 D)
( a+2b)us+a bus +2a+b —b%ps + @
(p2 = 1) 11 (u —Dn

() 2( bz(a—b)m + (a® —a2b—{—(1/27 V2+b2)a+2b'y Vo — U¥) up® + (3 a2 vy + 2072y — a® + a?
2(§) = —
vi2uy (pg — 1)° r
v (0Pu2® — b (—1/29%vy + a® + ab + b?) po® + (ab® + (37*ve + a®) b+ 2avy?vy + a®) g + 2 avy*vy + 1/2 by
2 2) (12,2 2 2 32 V12V22 (12 _21>2
+2(—b po +a?) (b2pe® + (1/29°v0 +a® — %) e + 3/2 715 — a )X
\ 1/12V22 (/LQ— 1) 3

+2

Suppose that ¢ is biharmonic not harmonic. Then, by virtue of Theorem 3.3.1, (a,b) # 0
and (v # 0 or g # Z‘—;) If o = Z—; then a direct computation shows that

(€)= _(a+b)2’y3aX1 N b(a+b)2’y3X2
(a —b)?1y? (a—b)* 142

and since (a,b) # (0,0), v # 0 and pp > 1 this is impossible so we must have uy # ‘;—j In this

case, since the last coordinate of (&) vanishes, we get

1 3 1 3
(5 vy + GQ) M2+2 Yro—a +(M2 - Mz) b = B 72V2M2+a2(ﬂ2—1)+2 Y V2+(,u2 - ,M2) b =0

60



3.3. HARMONIC AND BIHARMONIC HOMOMORPHISMS ON SOL

But since pp > 1, this is equivalent to v = a = b = 0 which is a contradiction. Finally, ¢ is

biharmonic if and only if it is harmonic.

1 0 0 1 1 0
e{=&and (,)1=]|01 0]|,(,)2=]1 p 0| andv; >0, ps>1 We have
00 mn 0 0 1n
R -2 Vil
—1 2 2
Me(Bo) = | —n~' 22 —2 b and  det(Me(Bo)) = 2 (p2 — 1) l(/52,u2 + a?)
1
—a+b  —busta  2v18%pa420’v142b%ps+2a?
¢! V1 1

If (o, 5) # (0,0) then, according to Proposition 2.5.1, £ is biharmonic if and only if it is
harmonic. If « = f = 0 then £ = & with v = 1 and we can use the arguments used in the

precedent case to conclude.

1 0 0 1 1 0
ef=¢&and (, )1=[0 1 0],(,)2=1|1 p 0| andv; >0, uy > 1. We have
00 141 0 0 )
1/1_1 —Vl_l 2 %
MeBy) = | —1n ! V&f 2%’”1—2 and  det(M¢(By)) =2 (22 )212/“02 5)
a—b bus—a 202 puov1 +2 0% +2 BPr1 42 a?

If (a,8) # (0,0) then, according to Proposition 2.5.1, ¢ is biharmonic if and only if it is
harmonic. If « = f = 0 then £ = & with v = 1 and we can use the arguments used in the

precedent case to conclude.

1 1 0 1 0 O
eéi=&and (,)1=|1 wu 0],(,)2=]0 1 0| andv; >0, g > 1. We have
0 0 w»n 0 0 v
122 2_62 b_122 2_62 2 2_62 24_2b4
() = 2 T2 mb)ay G2 A m )y e ) v 2l 220
4D V1“9 5%

One can see easily that 5(£) = 0 if and only if (a = b = 0) or (v = 0, a® = b?) which, according

to Theorem 3.3.1, is equivalent to £ is harmonic.
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3.3. HARMONIC AND BIHARMONIC HOMOMORPHISMS ON SOL

11 0 100
el{=%and (, )1=1]1 1y O|,(,)2=10 1 0| andwy; >0, >1. We have
0 0 %1 00 Vo
Vl_l O —2 ’%
_ OéZ + /82
Mg(]Bg()) = 0 %1 ! —2 V—bl and det(ME(Bo)) =2 m
a b (2a2y1+2a2+2b2>ul+262yl—2a2—2b2
7 (p1—D

If (a,8) # (0,0) then, according to Proposition 2.5.1, £ is biharmonic if and only if it is
harmonic. If « = f = 0 then £ = & with v = 1 and we can use the arguments used in the

precedent case to conclude.

1 1 0 10 0
eél=&and (, )1 =1 wu 0],(,)2=(0 1 0| andv; >0, gy > 1. We have
0 0 1 00
vt 0 2 u%
2 2
MeBo)=| 0 1! 2L and  det(Me(By)) = 2 %.
a b (2a2V1+2a2+2b2),u,1+262u1—2a2—2b2
” v (-1
The situation is similar to the precedent case.
1 1 0 1 1 0
eé=&and (,)1=1|1 w 0], (,)2=1]1 p 0| andv; >0,y >1. We have
0 0 u 0 0 1
( v (=b* (a —b) uo® + (a® — a®b + (1/2 %9 + b?) a + 2b7%vy — b%) uo® + (3ay?ve + 2b7%vy — a® +

() = -2 5 2
vy (p2 — 1) ,
v (BPue® — b (=1/27%vs 4+ a® + ab + b?) po? + (ab® + (37%vs + a?) b+ 2 av?vs + a®) g + 2 av?va + 1/2 by

vi2vy (2 — 1)°
(—0%ug + a®) (B*uo® 4+ (1/2v%va + a® — b?) g + 3/2*vy — a?)

+2

\2 V1292 (2 — 1) X3
10 0
One can see that 75(€) is the same as in the case £ =& and (, )1 =0 1 0|, (, )2 =
0 0 1y
1 1 0
1 puy 0 | and we can use the same arguments to conclude.
0 0
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3.4. HARMONIC AND BIHARMONIC HOMOMORPHISMS OF &44(2)

1 1 0 1 1 0
el{=%and (, )1=1|1 wp O, (,)2e=1]1 p 0| andy; >0, py; >1. We have
0 0 141 0 0 )
Vl_l —Vl_l —2 Vil
Mg(]B%O) —1/171 ‘Z—f -2 A:/ilb and
—a+b —uzbta (2 o2v1+2b% o +2 a2)u1+(2 B2v1—2 b2),u2—2 a?
Vi V1 v1(p1—1)
(t2 = 1) (@Ppa + BPpus)
det(M¢(Bg)) = 2 .
(Me(20)) I

If (o, 5) # (0,0) then, according to Proposition 2.5.1, £ is biharmonic if and only if it is
harmonic. If « = f = 0 then £ = & with v = 1 and we can use the arguments used in the

precedent case to conclude.

1 1 0 1 1 0
eéf=&and (, )1=|1 pm O0],(,)2=1|1 py 0| andv; >0, u; > 1. We have
0 0 %1 0 0 Vg
1/171 —1/171 2 5—1
Me(By) = | —vi7! 0 2 “V—“’lb and
a—b pob—a ((2a2u1+2b2),u2+2a2)u172b2u2+2,821/172a2
v v vi(p1i—1)
(p2 — 1) (@Ppapg + 57
det(M¢(By)) = 2 )
( 5( 0)) V12</~Ll_1)
The situation is similar to the precedent case. O

3.4 Harmonic and biharmonic homomorphisms of su(2)

The following proposition is a consequence of [3, Proposition 2.5].

Proposition 3.4.1. Let £ : (su(2),(, )1) — (su(2),(, )2) be an automorphism. If { , )1 or

(', )a is bi-invariant then & is harmonic.

Any homomorphism of su(2) is an automorphism and it is a product &3(a) o &(b) o & (c)

where
1 0 0 cos(a) 0 sin(a) cos(a) sin(a) 0
§i(a)=| 0 cos(a) sin(a) |,&(a)= 0 I 0 ,&3(a) = | —sin(a) cos(a) 0
0 —sin(a) cos(a) —sin(a) 0 cos(a) 0 0 1
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3.4. HARMONIC AND BIHARMONIC HOMOMORPHISMS OF &44(2)

I£ & (su(2), (L 1) —> (su(2), {, )2) with (. ); = Diag(Ay. 15, ) then

,T(&(a)) _sin(a)cos (G)A(:Z;Vz) (1 — ”1)X1,
m(&1(a)) = =2 (12 = va)” (=11 + MI)QZTSV(E)AEQCOS (a))? = 1/2) sin @y
r(&x(a)) = sin (a) cos (a)lL):\gl;W) (A — Vl)X2,

| ey — L@ = 1 co <§><VA ;;2)2 (ot ) sin(a)
r(Ex(a)) = — (a)sin (a)/\(f\/jl;m) (A — MI)XB,

| 2(&s(@) = =2 ol feo m?;;;ii) (k2 =) (1 = N)”

So we get:
Proposition 3.4.2. 1. If s = vy or uy = vy then & (a) is harmonic.

2. If us # vy and py # vy then &(a) is harmonic if and only if sin(2a) = 0 and & (a) is

biharmonic not harmonic if and only if cos(a)® = 3.

3. If Ao = vy or Ay = vy then &(a) is harmonic.

4. If Ao # vy and Ay # vy then &(a) is harmonic if and only if sin(2a) = 0 and &(a) is

biharmonic not harmonic if and only if cos(a)? = %

5. If Ao = pg or Ay = py then &(a) is harmonic.

6. If Ny # po and Ay # py then &3(a) is harmonic if and only if sin(2a) and &3(a) is

biharmonic not harmonic if and only if cos(a)? = %

Theorem 3.4.1. We consider the automorphism
g = fg(a)o&(b)o&(c) : (5u(2),diag()\1,,u1, Vl)) — (5u(2),diag(/\2,,u2, VQ)), 0 < Vi < [ < )\Z,Z = 1,2

1IFO<vy <pp <ALO< e <pg < Ag) or (0<uvy <py <Ap,0<wy<pg <) then€ is

harmonic if and only if one of the following condition holds:

(1) cos(b) =0, sin(b) =1 and sin(2(a — ¢)) =0,
(17) cos(b) =0, sin(b) = —1 and sin(2(a + ¢)) = 0,
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(i73) sin(b) = 0 and sin(2c¢) = sin(2a) = 0.

(0 <y <y < AL0 < vy =g < Ag) then € is harmonic if and only if one of the fol-

lowing condition holds:

(i) cos(b) = 0, sin(b) = 1 and sin(2(a — ¢)) = 0,
(ii) cos(b) =0, sin(b) = —1 and sin(2(a + ¢)) = 0,
(iii) sin(b) = 0 and sin(a) = 0.

(iv) sin(b) = 0, sin(2¢) = 0 and cos(a) = 0.

If (0 <vy <pyp=A1,0 <o < g < Ao) then € is harmonic if and only if one of the fol-

lowing condition holds:

0

cos(b) = 0, sin(b) = —1 and sin(2(a + ¢)) = 0,
0 and sin(a) = sin(2¢) = 0.
0

and cos(a) = sin(2¢) = 0.

If (0 < vy < pp < A,0 <wy < pg = A2) then € is harmonic if and only if cos(b) = 0 or
(sin(b) = sin(2¢) = 0).

If (0 <y =p1 <A,0 <o <pg<Ay) then & is harmonic if and only if cos(b) = 0 or
(sin(b) = sin(2a) = 0).

If (0 <y =1 < A,0 < vy =ps < Ay) then & is harmonic if and only if (cos(b) = 0),
(cos(a)) =0 or (sin(b) = sin(a) = 0).

If (0 <1 = < A,0 <y < pg = Ag) then € is harmonic if and only if sin(2b) = 0.

If (0 <y < pp = A, 0 < vy < g = Ag) then & is harmonic if and only if cos(b) cos(c) =0
or (sin(b) = sin(c) = 0).

If (0 <y < =MA,0<wy=ps < A) then & is harmonic if and only if one of the fol-

lowing situations holds

(i) cos(b) =0, sin(b) =1 and sin(2(a — ¢)) =0,
(17) cos(b) =0, sin(b) = —1 and sin(2(a + ¢)) = 0,
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3.4. HARMONIC AND BIHARMONIC HOMOMORPHISMS OF &44(2)

(i73) cos(c) =0 and sin(2a) = 0,

(1v) sin(b

~—

=sin(c) =0,

v) cos(a) = (—1 k sin(c) and sin(a) = (—1 k+1 sin(b) cos(c) '
( ) ( ) ( ) \/sin2(c)+sin2(b)cosz(c) ( ) ( ) \/sin2(c)+sin2(b)<:052(c)

Proof. We have

7(§) = A1 X1 + A2 Xo + A3 X3,

A1 Ay = cos (b) (sin (a)sin (b) Ay (1 — v1) (cos (¢))? — sin (¢) Aj cos (a) (u1 — v1) cos (¢) + sin (a) sin (b) vy (A —
= cos(b) (u2 — 12) R,

paA a1 Ag = cos (b) <sin (b) </\1 (1 — 1) (cos (€))? + 11 (A — u1)> cos (a) + cos (¢) sin (a) sin (¢) A\ (1 — V1)> (A2 -
= (Ay — 12) cos(b)S,

2

z = —wA i1 Asg = (A2 — p2) (2 cos (¢) sin (b) sin (¢) A1 (1 — v1) (cos (a))
n <>\1 ((cos (b))% — 2) (11 — 1) (cos (€))% + w1 (A — pua) (cos (b))% + A1 (p1 — yl)) sin (@) cos (@) — cos (¢) sin (b) sin (c

On the other hand, the following relations are straightforward to establish:

Rcos(a) — Ssin(a) = —A; (u1 — 1) sin (¢) cos (¢) ,

(3.1)
Rsin(a) + S cos(a) = sin (b) (A (p1 — 11) (cos ()41 (A — 111))

and if cos(b) = 0 then

55i(2(c —a)) (A — p2) Ay (ua — 1) if - sin(b) =1,
55in(2(c+a)) A — p2) Ay (1 — 1) if sin(b) = —1.

Suppose that (0 < vy < g3 < A\1,0 < vy < g < Ag). Then ¢ is harmonic if and only if
Rcos(b) = Scos(b) =z =0.

We distinguish two cases:

e cos(b) = 0. Then ¢ is is harmonic if and only if z = 0 and, by virtue of (3.2), we get the
desired result.

e cos(b) # 0 then from (3.1) sin(b) = 0 and sin(c) cos(c) = 0 and one can check easily that
¢ is harmonic if and only if cos(a) sin(a) = 0.

Except the last case, all the other cases can be deduced in the same way. Let us complete the
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3.4. HARMONIC AND BIHARMONIC HOMOMORPHISMS OF &44(2)

proof by treating the last case. We suppose that (0 < vy < g3 = A,0 < vy = s < Ag). Then

~cos(b)cos(c) (A1 —v1) (A2 — p2) Ry 2N — 1) (Ag — p2) Sy
&) = pa A1y X2 Ha A1

Ry = sin (a)sin (¢) + cos (a) sin (b) cos (c) ,
Sy = sin (b) (cos (a))” sin (¢) cos (c) + % sin (a) (14 ((cos (b))* —2) (cos (c)) ) cos (a) — % sin (b) sin (¢) cos (¢)

X37

If cos(b) = 0 then

Z_%szn(Q(c —a)) if sin(b) =1,

—1sin(2(c+a)) if sin(b) = -1

S =

and we get (i) and (7).

If cos(c) = 0 then S; = Isin(2a) and we get (ii).

If sin(b) = sin(c) = 0 the S; = Ry = 0 and hence ¢ is harmonic.

Suppose now that cos(b) # 0, cos(c) # 0 and (sin(b), sin(c)) # (0,0). Then ¢ is harmonic if
and only if Ry = 57 = 0. We have

R, = sin(a sin(c) + cos( sm(b) cos(c) _ sin(a + a)
\/ sin?(c) + sin(b) cos?(c \/ sin?(c) + sin?(b) cos?(c)
where
cos(a) = sin(c) and  sin(a) sm(b) cos(c)

V/sin?(c) + sin®(b) cos?(c) V/sin?(¢) + sin?(b) cos?(c)
So Ry = 0 if and only if a + o = km where k& € Z. Thus
sin(c)
\/sm ) + sin?(b) cos?(c)
sin(b) cos(c)
V/sin?(c) 4 sin?(b) cos?(c)
If we replace cos(a) and sin(a) in S;, we get S; = 0 which completes the proof. O

and

cos(a) = (—1)F cos(a) = )k

sin(a) = —(—1)"sin(a) = (=1)**!

The situation for biharmonic homomorphisms is more complicated. We have the following

non trivial biharmonic homomorphism which is not harmonic.

Example 24. The homomorphism & = &3(a) o &() o &i(e) : (su(2),diag(A, p1, 1)) —

(su(2), diag(Aq, p2, 12)) is biharmonic not harmonic if

1

i
p1 =11, o = vy and  cos(a) = cos(b) = <§> :
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3.5. HARMONIC AND BIHARMONIC HOMOMORPHISMS OF SL(2,R)

3.5 Harmonic and biharmonic homomorphisms of sl(2, r)

Any homomorphism of sl(2,R) is an automorphism and it is a product £3(a) o0&, (b) o0& (c) where

1 0 0 cosh(a) 0 sinh(a) cos(a) sin(a) 0
§i(a) =1 0 cosh(a) sinh(a) |[.&(a)= 0 1 0 ,&s3(a) = | —sin(a) cos(a) O
0 sinh(a) cosh(a) sinh(a) 0 cosh(a) 0 0 1

166 (su(2), (L 1) —> (su(2), {, )2) with (, ); = Diag(Ay. 15, ) then

'r(gl(a)) __cosh (a) sinh (03)22?; vy) (1 + “1)X1,
o) - 2 L O B e,
Hx(a)) — oSt (@)sinh (?2(22” 1+ DICEEO
o(6a(a)) = (2 (cosh (a))” = 1) COShA(;)VEj;;zF o)’ (v1 + A1)*sinh (a) X
r(&5(a)) = —Sna) cos (@) (231—;2) (Cmth)

a(6sla)) = -2 sin (a) cos (a) (= + u;?ﬁ(:;y;M)Z ((cos (a)” —1/2) X

So we get:

Proposition 3.5.1. 1. & (a) is biharmonic if and only if it is harmonic if only if a = 0,
ie, & =Id.

2. &(a) is biharmonic if and only if it is harmonic if only if a =0, i.e., & = Id.
3. If Ao = po or Ay = py then &(a) is harmonic.

4. If Ao # po and Ny # py then &(a) is harmonic if and only if (sin(2a) = 0) and &3(a) is

biharmonic not harmonic if and only if cos(a)? = %

Theorem 3.5.1. The automorphism
§ = &3(a)osa(b)ogi(c) : (sI(2,R), diag(A1, p1, v1) — (sl(2,R), diag(Ag, pia, v2),0 < A < pay, v > 0
is harmonic if and only if &(b) = &1 (c) = Idgo Ry and §3(a) is harmonic.
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Proof. We have

(7-(5) _ (,LLQ + 1/2>RX1 i ()\2 -+ VQ)SX2 n (/\2 — V2>Q
Ao A1 iV Mo A1V Vo1

R = cosh (b) (sinh (b) Ay sin (a) (p1 + 1) (cosh (¢))* — sinh (¢) Ay cos (a) (1 + v1) cosh (¢) — sinh (b) vy sin (a) |
S = cosh (b) (sinh (b) Ay cos (a) (p1 + 1) (cosh (¢))? 4 sinh (¢) Ay sin (a) (u1 + v1) cosh (¢) — sinh (b) 2 cos (a) |
Q = —2 cosh (¢) sinh (b) sinh (¢) Ay (411 + v1) (cos (a))? + cosh (¢) sinh (b) sinh (¢) Ay (11 + 11)

| +sin (a) (A1 ((cosh (b))* — 2) (1 + v1) (cosh () =11 (A — p1) (cosh (D))* + Ay (1 + 1)) cos (a).

X37

On the other hand, one can show easily

{cos(a)R —sin(a)S = — cosh (b) sinh (¢) cosh (¢) Ay (1 + 1) ,
sin(a)R + cos(a)S = (A1 (1 + 11) (cosh () + 11 (1 — A1)) cosh (b) sinh (b) .

So £ is harmonic if and only if
sinh(b) = sinh(c) =Q =0

and we get the desired result. O]
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